
NUSMV: a new Symbolic Model Verifier

A. Cimatti1 E. Clarke2 F. Giunchiglia1 M. Roveri1;3

1ITC-IRST, Via Sommarive 18, 38055 Povo, Trento, Italy

fcimatti,fausto,roverig@irst.itc.it

2SCS, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA

15213-3891, USA, Edmund.Clarke@cs.cmu.edu
3DSI, University of Milano, Via Comelico 39, 20135 Milano, Italy

1 Introduction

This paper describes NUSMV, a new symbolic model checker developed as a joint

project between Carnegie Mellon University (CMU) and Istituto per la Ricerca Scien-

tifica e Tecnolgica (IRST). NUSMV is designed to be a well structured, open, flexible

and documented platform for model checking. In order to make NUSMV applicable

in technology transfer projects, it was designed to be very robust, close to the standards

required by industry, and to allow for expressive specification languages.

NUSMV is the result of the reengineering, reimplementation and extension of

SMV [6], version 2.4.4 (SMV from now on). With respect to SMV, NUSMV

has been extended and upgraded along three dimensions. First, from the point of

view of the system functionalities, NUSMV features a textual interaction shell and

a graphical interface, extended model partitioning techniques, and allows for LTL

model checking. Second, the system architecture of NUSMV has been designed

to be highly modular and open. The interdependencies between different modules

have been separated, and an external, state of the art BDD package [8] has been in-

tegrated in the system kernel. Third, the quality of the implementation has been

strongly enhanced. This makes of NUSMV a robust, maintainable and well docu-

mented system, with a relatively easy to modify source code. NUSMV is available at

http://nusmv.irst.itc.it/.

2 System Functionalities

NUSMV can process files written in SMV language [6], and allows for the construc-

tion of the model with different modalities, reachability analysis, fair CTL model

checking, computation of quantitative characteristics of the model, and generation

of counterexamples. In addition, NUSMV features an enhanced partitioning method

for synchronous models based on [7], and allows for disjunctive partitioning of asyn-

chronous models, and for the verification of invariant properties in combination with

1

Figure 1: A snapshot of the NuSMV GUI.

reachability analysis. Furthermore, NUSMV supports LTL model checking. The al-

gorithm is based on the combination of a tableau constructor for the LTL formula with

standard CTL model checking, along the lines described in [5].

NUSMV can work in batch mode, just like SMV, processing an input file accord-

ing to the specified command line options. In addition, NUSMV has an interactive

mode: it enters a shell performing a read-eval-print loop, and the user can activate

the various computation steps (e.g. parsing, model construction, reachability analysis,

model checking) as system commands with different options. (This interaction mode is

largely inspired by the VIS interaction mode [2].) These steps can therefore be invoked

separately, possibly undone or repeated under different modalities. Each command is

associated with an on-line help. Furthermore, the internal parameters of the system can

be inspected and modified to tune the verification process. For instance, the NUSMV

interactive shell provides full access to the configuration options of the underlying BDD

package. Thus, it is possible to investigate the effect of different choices (e.g. whether

and how to partition the model, the impact of different cache configurations) on the ver-

ification process. For instance, it is possible to control the application of BDD variable

orderings in a particular phase of the verification (e.g. after the model is built).

On top of the interactive shell, a graphical user interface (GUI from now on) has

been developed (Figure 1). The GUI provides an integrated environment to edit and

2

verify the file containing the model description. It provides graphical access to all the

commands interpreted by the textual shell of NUSMV, and allows for the modification

of the options in a menu driven way. Moreover, the GUI offers a formula editor which

helps the user in writing new specifications. Depending on the kind of formula being

edited (e.g. propositional, CTL, LTL), various buttons corresponding to modalities

and/or boolean connectors are activated and deactivated.

3 System Architecture

Model checking is often referred to as “push-button” technology. However, it is very

important to be able to customize the model checker according to the system being

verified. This is particularly true in technology transfer, when the model checker may

act as the kernel for a custom verification tool, to be used for a very specific class

of applications. This may require the development of a translator or a compiler for a

(possibly proprietary) specification language, and the effective integration of decom-

position techniques to tackle the state explosion.

NUSMV has been explicitly designed to be an open system, which can be eas-

ily modified, customized or extended. The system architecture of NUSMV has been

structured and organized in modules. Each module implements a set of functionalities

and communicates with the others via a precisely defined interface. A clear distinction

between the system back-end and front-end has been enforced, in order to make it pos-

sible to reuse the internal components independently of the input language being used

to describe the model.

The architecture of NUSMV (see Figure 2) is composed of the following modules:

Kernel. The kernel provides the low level functionalities such as dynamic memory

allocation, and manipulation of basic data structures (e.g. cons cells, hash tables). The

kernel also provides all the basic BDD primitives, directly taken from the CUDD [8]

BDD package. The integration of the CUDD package hides the details of the garbage

collection. The NUSMV kernel can be used as a black box, following coding standards

which have been precisely defined.

Parser. This module implements the routines to process a file written in NUSMV

language, check its syntactic correctness, and build a parse tree representing the internal

format of the input file.

Compiler. This module is responsible for the compilation of the parsed model into

BDDs. The Instantiation submodule processes the parse tree, and performs the instanti-

ation of the declared modules, building a description of the finite state machine (FSM)

representing the model. The Encoding submodule performs the encoding of data types

and finite ranges into boolean domains. Having separated this module makes it possi-

ble to have different encoding policies which can be more appropriate for different kind

of variables (e.g. data path, control path). The FSM Compiler submodule provides the

routines for constructing and manipulating FSM’s at the BDD level. It is responsible of

all the necessary semantic checks on the read model, such as the absence of circular

definitions. The FSM’s can be represented in monolithic or partitioned form [3]. The

heuristics used to perform the conjunctive partitioning of the transition relation and

reordering of the clusters [7] have been developed to work at the BDD level, indepen-

dently of the input language. The interface to other modules is given by the primitives

3

MEMORY MANAGER

S-EXPRSA-LISTS
CUDD Package

DECISION DIAGRAMS

GRAPHICAL USER INTERFACE

INTERACTION SHELL

CTL M. C.

COMPUTE

INVAR

REACHABILITY

EXPLAIN

PARSING

Syncronous

* No heuristic

* IWLS95 heuristic

- Monolithic
- Conjunctive

Asyncronous
- Monolithic
- Disjunctive

 LTL

FSM COMPILER

ENCODING

INSTANTIATION

Figure 2: The NuSMV system architecture.

for the computation of the image and counter-image of a set of states. These primitives

are independent of the method used to represent the transition relation.

Model Checking. This module provides the functionalities for reachability, fair

CTL model checking, invariant checking, and computation of quantitative characteris-

tics. Moreover, this module provides the routines for counterexample generation and

inspection. Counterexamples can be produced with different levels of verbosity, in the

form of reusable data structures, and can subsequently be inspected and navigated. All

these routines are independent of the particular method used to represent the FSM.

LTL. The LTL module is a separated module which calls an external program that

translates the LTL formula into a tableau suitable to be loaded into NUSMV. This

program also generates a new CTL formula to be verified on the synchronous product

of the original system and the generated tableau.

Interactive shell. From the interaction shell the user has full access to all the func-

tionalities provided by the system.

Graphical user interface. The graphical user interface has been designed on top of

the interactive shell. It allows the user to inspect and set the value of the environment

variables of the system, and provides full access to all the functionalities.

4 Implementation

NUSMV has been designed to be robust, close to the standards required by industry

and easy to maintain and modify. NUSMV is written in ANSI C and is POSIX compli-

ant. This makes the system portable to any compliant platform. It has been throughly

debugged with Purify (http://www.pureatria.com) to detect memory leaks

and runtime memory corruptions errors.

The kernel of NUSMV provides low level functionalities, such as dynamic memory

allocation, in a way independent from the underlying operating system. Moreover, it

provides routines for the manipulation of basic data structures such as cons cells, hash

tables, arrays of generic types, and encapsulates the CUDD BDD package [8].

4

In order to implement the architecture depicted in Section 3, the source code of NU-

SMV has been organized in different packages. NUSMV is composed of 11 packages.

Each package exports a set of routines which manipulate the data structures defined

in the package and which allow to modify the options associated to the functionalities

provided by the package itself. Moreover, each package is associated with a set of com-

mands which can be interpreted by the NUSMV interactive shell. We have packages

for model checking, FSM compilation, BDD interface, LTL model checking and ker-

nel functionalities. New packages can be added relatively easily, following precisely

defined rules.

The GUI has been developed in Tcl/Tk. It runs as a separate process, synchronously

communicating with NUSMV by issuing textual commands to the interactive shell, and

processing the resulting output to display it graphically.

The code of NUSMV has been documented following the standards of the ext

tool (http://alumnus.caltech.edu/˜sedwards/ext), which allows for

the automatic extraction of the programmer manual from the comments in the sys-

tem source code. The programmer manual is available in TXT or HTML format, and

can be browsed by an HTML viewer. This tool is also used to generate the help on line

available through the interactive shell and via the graphical user interface.

The user manual has been written following the TEXINFO standard, from which

different formats (i.e. POSTSCRIPT, PDF, DVI, INFO, HTML) can be automatically gen-

erated, and accessed via an HTML viewer or in hardcopy.

5 Results and Future Directions

NUSMV is a robust, well structured and flexible platform, designed to be applicable

in technology transfer projects. The performance of NUSMV have been compared

with those of SMV by running a number of SMV examples. Despite the fact that

NUSMV gives up some of the optimizations of SMV to simplify the dependencies

between modules, an improvement in computation time has been obtained. In most

examples NUSMV performs better than SMV, in particular for larger examples. This

enhancement in performance is mainly due to the use of CUDD BDD package.

The NUSMV architecture provides a precise distinction between the front-end,

specific to the SMV input language, and the back-end (including the heuristics for

model partitioning and model checking algorithms), which is independent of the input

language. This separation has been used to develop on top of NUSMV the MBP sys-

tem. MBP is a planner able to synthesize reactive controllers for achieving goals in

nondeterministic domains [4].

Functionalities currently under development are a simulator, which is of paramount

importance for the user to acquire confidence in the correctness of the model, and a

compiler for an imperative style input language, which can often be very convenient in

the modeling process. Further developments will include the integration of decompo-

sition techniques (e.g. abstraction and compositional verification), and new and very

promising techniques based on the use of efficient procedures for propositional satisfi-

ability, following the ideas reported in [1].

5

References

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without

BDDs. In Proc. TACAS’99, March 1999. To appear.

[2] R. K. Brayton et al. VIS: A system for Verification and Synthesis. In Proc. of

CAV’96. LNCS 1102, Springer-Verlag.

[3] J. Burch, E. Clarke, and D. Long. Representing Circuits More Efficiently in

Symbolic Model Checking. In Proc. of the 28th ACM/IEEE Design Automation

Conference, pages 403–407, Los Alamitos, CA, June 1991. IEEE Computer So-

ciety Press.

[4] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based Generation of

Universal Plans in Non-Deterministic Domains. In Proc. of the 15th National

Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, 1998.

AAAI-Press.

[5] O. Grumberg E. Clarke and K. Hamaguchi. Another Look at LTL Model Check-

ing. Formal Methods in System Design, 10(1):57–71, February 1997.

[6] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

[7] R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Efficient BDD

algorithms for FSM synthesis and verification. In IEEE/ACM Proceedings Inter-

national Workshop on Logic Synthesis, Lake Tahoe (NV), May 1995.

[8] F. Somenzi. CUDD: CU Decision Diagram package — release 2.1.2. Department

of Electrical and Computer Engineering — University of Colorado at Boulder,

April 1997. ftp://vlsi.colorado.edu/pub/

6

