Integrating BDD-based and SAT-based
Symbolic Model Checking

Alessandro Cimatti', Enrico Giunchiglia?, Marco Pistore!, Marco Roveri®,
Roberto Sebastiani®, and Armando Tacchella?

1 ITC-IRST, Via Sommarive 18, 38050 Trento, Italy
{cimatti,pistore,roveri}@irst.itc.it
2 DIST - Universitd di Genova, Viale Causa 13, 16145 Genova, Italy
{enrico,tac}@mrg.dist.unige.it
8 Universita di Trento, Via Sommarive 14, 38050 Trento, Italy
rseba@science.unitn.it

Abstract. Symbolic model checking is a very successful formal verifica-
tion technique, classically based on Binary Decision Diagrams (BDDs).
Recently, propositional satisfiability (SAT) techniques have been pro-
posed as a computational basis for symbolic model checking, and proved
to be an effective alternative to BDD-based techniques. In this paper we
show how BDD-based and SAT-based techniques have been effectively
integrated within the NuSMV symbolic model checker.

1 Introduction

Model checking [11,20] is a formal technique for the verification of finite state
systems. The system being analyzed is represented as a Finite State Machine
(FSM), while the requirements to be satisfied are expressed in temporal logics,
e.g. Computation Tree Logic (CTL), or Linear Temporal Logic (LTL). Model
checking algorithms are based on the exhaustive analysis of the state space of
the FSM. They are able to prove that the system satisfies the requirement, or,
more importantly, are able to produce a counterexample, i.e. a behaviour of the
FSM that violates the requirements. Model Checking is an extremely effective
debugging technique, and is being applied in several application domains, rang-
ing from the analysis of telecommunication protocols to reactive controllers to
hardware designs.

Originally, model checking was implemented by means of “explicit-state”
techniques, where single states of the FSM are analyzed and stored. One of the
most notable examples of explicit-state model checking is SPIN [17], that is very
effective in the analysis of asynchronous systems. In general, for many application
domains, the large amount of computational resources needed to analyze real-size
designs (the so-called state-explosion problem) may be a significant limitation.
The introduction of Symbolic Model Checking [18] made it possible to explore
state spaces of extremely large size. In symbolic model checking, instead of ma-
nipulating individual states, the algorithms manipulate sets of states. These are

compactly represented and efficiently constructed by means of Binary Decision
Diagrams [6] (BDDs), that are canonical forms for propositional formulae. Since
the seminal work of McMillan [18], several mechanisms for a partitioned repre-
sentation of finite state machines and different exploration styles (7,22, 13] have
allowed to increase the applicability of BDD-based model checking. Recently,
a new form of symbolic model checking, commonly known as Bounded Model
Checking [4], has been introduced. Bounded Model Checking is based on the
encoding of a model checking problem into a propositional satisfiability (SAT)
problem, and on the application of efficient SAT solvers. This approach, in the
following called SAT-based model checking, relies on the enormous progress in
the field of propositional satisfiability [19]. The approach is currently enjoying a
substantial success in several industrial fields (see, e.g., [12], but also [5]), and
opens up new research directions.

BDD-based and SAT-based model checking are often able to solve different
classes of problems, and can therefore be seen as complementary techniques. The
effective integration of BDD-based and SAT-based model checking techniques
is very important to widen the spectrum of applicability of symbolic model
checkers. Goal of this paper is to describe how the BDD-based and SAT-based
approaches to symbolic model checking have been successfully integrated within
the NuSMV model checker. In Section 2 we outline the NUSMYV project. In
Section 3 and 4 we describe the functionalities and the architecture of NU-
SMV2. In Section 5 we discuss some results and outline directions for future
development,.

2 The NuSMYV Symbolic Model Checker

NUSMYV is a symbolic model checker originated from the reengineering, reim-
plementation and extension of SMV [18], the original BDD-based model checker
developed by McMillan et al. at CMU (SMYV from now on). The NUSMYV project
aims at the development of a state-of-the-art symbolic model checker, designed
to be applicable in technology transfer projects: it is a well structured, open,
flexible and documented platform for model checking, and is robust and close to
industrial systems standards [8].

The first version of NUSMV, called NUSMV1 in the following, basically im-
plements BDD-based symbolic model checking. The second version of NUSMV
(NUSMV2 in the following), inherits all the functionalities and the implementa-
tion style of the previous version. However, NUSMV?2 significantly extends the
functionalities of NUSMV1, and its internal structure departs from the one of
NUSMV1. The main novelty in NUSMV2 is the integration of model check-
ing techniques based on propositional satisfiability. Remarkably, the integration
covers the whole input language of NUSMV. NUSMV2 is currently the only pub-
licly available system that allows for both BDD-based and SAT-based model
checking. In order to integrate SAT-based and BDD-based model checking, a
major architectural redesign was carried out in NUSMV2, in order to make as
many functionalities as possible independent of the actual model checking engine

used. An example of this are the services provided by the modules implementing
the preprocessing and reduction of the model to be analyzed. This allowed for
the effective integration of the new SAT-based engine, and opens up toward the
implementation of other model checking procedures.

NUSMV?2 is the result of a cooperative project. IRST and the University of
Trento carried out the activities related to model checking, while the University
of Genova provided a package implementing reduced boolean circuits [1] and
the state of the art SIM SAT solver [16]. The SIM solver is particularly effec-
tive in tackling problems arising from bounded model checking [12]. NUSMV2
is publicly available, under the GNU Lesser General Public License (LGPL),
at http://nusmv.irst.itc.it/.

3 System Functionalities

NUSMYV is able to process files written in an extension of the SMV language. In
this language, it is possible to describe finite state machines by means of decla-
ration and instantiation mechanisms for modules and processes, corresponding
to synchronous and asynchronous composition, and to express a set of require-
ments in CTL and LTL. NUSMYV can work batch or interactively, with a textual
interaction shell.

An SMYV file is processed in several phases. The first phases require the
analysis of the input file, in order to construct an internal representation of the
system to be analyzed. NUSMV?2 neatly separates the input language in differ-
ent layers, of increasing simplicity, that are incrementally eliminated. The first
step, called flattening, performs the instantiation of module types, thus creat-
ing modules and processes, and produces a synchronous, flat model, where each
variable is given an absolute name. The second step, called boolean encoding,
maps a flat model into a boolean model, thus eliminating scalar variables. This
second step takes into account the whole SMV language, including the encoding
of bounded integers, and the set-theoretic and arithmetic functions and predi-
cates. It is possible to print out the different levels of the input file, thus using
NUSMV?2 as a flattener. The same reduction steps are applied to the require-
ments. In addition, by means of the cone of influence reduction [2], it is possible
to restrict the analysis of each property to the relevant parts of the model. This
reduction can be extremely effective in tackling the state explosion problem.

The preprocessing is carried out independently from the model checking en-
gine to be used for verification. After this, the user can choose whether to apply
BDD-based or SAT-based model checking. In the case of BDD-based model
checking, a BDD-based representation of the the Finite State Machine is con-
structed. In this step, different partitioning methods and strategies [21] can be
used. Then, different forms of analysis can be applied: reachability analysis, fair
CTL model checking, LTL model checking via reduction to CTL model checking,
computation of quantitative characteristics of the model.

In the case of SAT-based model checking, NUSMV2 constructs an internal
representation of the model based on Reduced Boolean Circuit (RBC), a repre-

sentation mechanism for propositional formulae. Then, it is possible to perform
SAT-based bounded model checking of LTL formulae. Given a bound on the
length of the counterexample, a LTL model checking problem is encoded into
a SAT problem. If a propositional model is found, it corresponds to a coun-
terexample of the original model checking problem. With respect to the tableau
construction in [4], enhancements have been carried out that can significantly
improve the performances of the SAT checker. The system enters a loop, inter-
leaving problem generation and solution attempt via a call to the SAT solver,
and iterates until a solution is found or the specified bound is reached. Dual
techniques for invariant checking [3] can be applied to invariant properties.

The properties are handled and shown to the user by a property manager,
that is independent of the model checking engine used for the verification. This
means that it is possible for the user to decide what solution method to adopt for
each property. Furthermore, the counterexample traces being generated by both
model checking modules are presented and stored into a unique format. Similarly,
the user can simulate the behaviour of the specified system, by generating traces
either interactively or randomly. Simulation can be carried out both via BDD-
based or SAT-based techniques.

4 System Architecture

In the development of NUSMYV, particular care is directed to the architectural
design, in order to obtain an open architecture that can be integrated within
different design environments, and customized depending on the application do-
main. Therefore, the architecture of NUSMV2 has been deeply revised and ex-
tended with respect to NUSMV1, in order to allow for a clean and effective
integration of SAT-based techniques and to overcome some limitations of NU-
SMV1. A high level view of the internal structure of NUSMV?2 is reported in
Figure 1. The architecture is composed of the following main modules.

Flattening: The Flattening module implements the parsing of the model,
some consistency checks to guarantee the well foundedness of the definitions,
and eliminates processes and modules, producing a flat, scalar model, and a set
of flat properties.

Encoding: The Encoding is responsible for mapping the flat, scalar model
into a boolean model. This requires the introduction of the suitable boolean
variables, depending on the range of the scalar variables being manipulated. For
instance, for a bounded integer variable x, ranging from 0 to 255, 8 boolean vari-
ables x1, ..., xg are defined. Furthermore, an encoding that associates each of the
proposition z = v into a corresponding assignment to 1, ..., zg is constructed.
Then, for each atomic proposition in the program, the corresponding boolean ex-
pression is constructed. For instance, the atomic proposition (z+y) < z would be
associated with a boolean expression in the boolean variables associated with z,
y and z. This operation is carried out by means of Algebraic Decision Diagrams,
particular forms of Decision Diagrams with non-boolean leaves.

PL.Pn M
FLATTENING SIMULATION TRACE MANIPULATION
PfL...Pfn Mf
r 777777777777777777 I
! ENCODE 1 BDD-BASED TRACE
‘
|
| SCALARVAR ! VERIFICATION RECONSTRUCTION
:::::::::::::::::::‘ - reachability
| BUILD BOOLEAN ! - model checking ¢
| FUNCTIONS FOR I - quantitative analysis
! SCALAR PROPOSITIONS | SiM
”””””””””” SATSOLVER
) v BOUNDED
Pfb Mfb
| i MODEL Mifb [=(K) Pfb.cnf
BDD-BASED CHECKER
DIMACS
CONE OF INFLUENCE MODEL
PRINTER
CONSTRUCTION
1 | Mfb |=(K) Pfb.dimacs
Mfb(Pfb) i
RBC ENGINE
BDD PACKAGE
CNF CONVERSION

Fig. 1. The internal structure of NuSMV2.

Cone of Influence. This module implements the routines to restrict the
analysis to a reduced FSM, containing only the relevant variables for each prop-
erty. This reduction is amenable both for BDD-based and SAT-based model
checking.

BDD-based Model Construction: The BDD-based model construction
module implements the Finite State Machine corresponding to the input file in
terms of BDDs. An explicit data structure for FSM’s is provided, that allows to
encapsulate the actual construction/partitioning method applied. It is therefore
possible to have different FSM’s associated to different verification problems.

BDD-based Verification: The BDD-based verification routines implement
reachability analysis, LTL and CTL model checking, and quantitative analysis,
in terms of the FSM data structures provided by BDD-based model construc-
tion. CTL model checking is implemented directly, while LTL model checking is
reduced to a CTL model checking problems by means of a tableau construction,
as described in [9]. The analysis of quantitative properties, such as the computa-
tion of the least distance between the occurrence of two given events, is carried
by dedicated algorithms. All the operations only rely on image and preimage
computations, and are independent of the actual partitioning mechanism.

BDD package: The functionalities for the manipulation and storage of
BDDs is provided by the BDD module. This module is based on the state-
of-the-art Colorado University Decision Diagram (CUDD) package developed

by Fabio Somenzi [24]. An additional layer encapsulates the CUDD functionali-
ties in order to provide a uniform interface that hides low-level issues related to
garbage collection of BDDs.

Bounded Model Checker: The Bounded Model Checker module provides
the SAT-based model checking functionalities. It interacts with the RBC package
to generate a RBC-based model representation. At the lowest level, an associ-
ation between state variables at different time instants and the corresponding
RBC variables is defined. The construction is optimized by means of memoizing
techniques, in order to avoid the recomputation of frequently used RBCs. The
variable association schema is implemented in such a way that full blown parallel
substitution can be replaced by a shifting operation. Once the internal repre-
sentation of the model is complete, the Bounded Model Checker can generate
the SAT problems corresponding to a given formula, with a construction that
extends the one in [4]. In particular, the construction takes into account all the
components of the model (e.g., fairness constraints, invariants). Several encod-
ings of the property are possible, depending if we are checking for a violation
occurring exactly at step k or at a step < k, and with different loop-back struc-
tures for the counterexample. The problem is generated as an RBC, that is then
converted in CNF format and provided in input to the SIM solver. If a model
is found, then it is returned to the Bounded Model Checker, whose final step it
to activate the trace reconstruction of the counterexample. The produced model
checking problems can also be printed out in the standard DIMACS format, thus
allowing for the stand-alone use of other SAT solvers.

Reduced Boolean Circuit (RBC): The RBC package implements a sim-
plified version of the RBC data structure and the associated primitives for storing
and manipulating propositional formulas, see [1]. The RBC package comes with
a depth-first traversal routine, which allows to search the RBC, applying a given
function (passed as a parameter) to each node being visited either in-order, pre-
order, or post-order. This function is at the basis of the CNF converter. The
CNF converter generates an equi-satisfiable formula obtained from the RBC by
applying a structure-preserving transformation. The CNF converter also marks
the variables occurring in the RBC. The ability to distinguish between the “in-
dependent” variables (i.e., the ones occurring in the formula before the CNF
conversion) and the “dependent” variables (i.e., the ones introduced during the
CNF conversion) can be extremely useful in driving the solver [14,15,23,12].

SIM SAT Solver: SIM is an efficient SAT solver based on the Davis-
Logemann-Loveland procedure. Two are the distinguishing features of SIM.
First, it can limit the branching to a subset of the variables, assuming that the
others can be assigned by unit propagation. Second, it allows for relevance learn-
ing, and branching heuristics based on boolean constraint propagation which
analyze the whole set of (relevant) variables. As [23,12] show, these features can
produce dramatic speed-ups in the overall performances of the SAT checker, and
thus of the whole system. SIM also features many other branching heuristics,
and size learning (see [16]).

Simulation/Trace Manipulation: The simulation package allows for the
interactive and random simulation of the behaviour of the model being processed.
It is compatible both with the BDD-based and the SAT-based representation,
and encapsulates a uniform trace handling mechanism through which the stored
traces can be inspected and rerun.

5 Conclusions

NUSMYV is a robust, well structured and flexible platform for symbolic model
checking, designed to be applicable in technology transfer projects. In this paper,
we have shown how BDD-based and SAT-based model checking are integrated
in the new version of NUSMYV, that significantly extends the previous version.
In particular, we have discussed the functionalities and the architecture of NU-
SMV2, that integrates SAT-based state of the art verification techniques, is
able to working as a problem flattener in DIMACS format, and tackles the state
explosion with cone of influence reduction.

NUSMV2 is currently being used as the verification kernel of a CAD tool de-
veloped in a technology transfer project, where an imperative style programming
language is used to describe embedded controllers. The integration of decomposi-
tion techniques (e.g., abstraction and compositional verification) is under devel-
opment. In the future, we plan to investigate a tighter integration between BDD-
based and SAT-based technologies. The new internal architecture also opens up
the possibility to integrate different boolean encodings [10] and different (e.g.,
non boolean) verification engines.

References

1. Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. Symbolic reachability analy-
sis based on SAT-solvers. In Susanne Graf and Michael Schwartzbach, editors,
Proc. Tools and Algorithms for the Construction and Analysis of Systems TACAS,
Berlin, Germany, volume 1785 of LNCS. Springer-Verlag, 2000.

2. S. Berezin, S. Campos, and E. M. Clarke. Compositional reasoning in model
checking. In Proc. COMPOS, 1997.

3. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking
Using SAT Procedures instead of BDDs. In Proc. 36th Conference on Design
Automation, 1999.

4. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings of the Fifth International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS ’99), 1999.

5. A.Borilv. A Fully Automated Approach for Proving Safety Properties in Interlock-
ing Software Using Automatic Theorem-Proving. In S. Gnesi and D. Latella, edi-
tors, Proceedings of the Second International ERCIM Workshop on Formal Methods
for Industrial Critical Systems, Pisa, Italy, July 1997.

6. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293-318, September 1992.

7. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic Model Checking: 10%° States and Beyond. Information and Computation,
98(2):142-170, June 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic

Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Con-
ference on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes
in Computer Science, pages 495-499, Trento, Italy, July 1999. Springer-Verlag.

. E. Clarke, O. Grumberg, and K. Hamaguchi. Another Look at LTL Model Check-

ing. Formal Methods in System Design, 10(1):57-71, February 1997.

E. Clarke and X. Zhao. Word Level Symbolic Model Checking: A New Approach
for Verifying Arithmetic Circuits. Technical Report CMU-CS-95-161, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891, USA,
May 1995.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time tem poral logic. In Logic of Programs: Workshop. Springer Verlag, May
1981. Lecture Notes in Computer Science No. 131.

Fady Copty, Limor Fix, Enrico Giunchiglia, Gila Kamhi, Armando Tacchella, and
Moshe Vardi. Benefits of bounded model checking at an industrial setting. In
Proceedings of CAV 2001, pages 436-453, 2001.

Ranan Fraer, Gila Kamhi, Barukh Ziv, Moshe Y. Vardi, and Limor Fix. Priori-
tized traversal: Efficient reachability analysis for verification and falsification. In
Proceedings of the 12th International Conference on Computer Aided Verification,
pages 389-402. Springer, July 2000.

E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the rest will follow:
Exploiting determinism in planning as satisfiability. In Proc. AAAI 1998.

E. Giunchiglia and R. Sebastiani. Applying the Davis-Putnam procedure to non-
clausal formulas. In Evelina Lamma and Paola Mello, editors, Proceedings of
AI*IA’99: Advances in Artificial Intelligence, pages 84-94. Springer Verlag, 1999.
Enrico Giunchiglia, Marco Maratea, Armando Tacchella, and Davide Zambonin.
Evaluating search heuristics and optimization techniques in propositional satisfia-
bility. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings
of IJCAR 2001, volume 2083 of Lecture Notes in Computer Science, pages 347-363.
Springer, 2001.

G. J. Holzmann. The model checker Spin. IEEE Trans. on Software Engineering,
23(5):279-295, May 1997. Special issue on Formal Methods in Software Practice.
K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 88th Design
Automation Conference, pages 530-535. ACM, 2001.

J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the Fifth International Symposium in Programming,
1981.

R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Efficient BDD
algorithms for FSM synthesis and verification. In IEEE/ACM Proceedings Inter-
national Workshop on Logic Synthesis, Lake Tahoe (NV), May 1995.

K. Ravi and F. Somenzi. High-density reachability analysis. In International
Conference on Computer Aided Design, pages 154-158, Los Alamitos, Ca., USA,
November 1995. IEEE Computer Society Press.

O. Shtrichman. Tuning SAT checkers for bounded model-checking. In Proc. 12th
International Computer Aided Verification Conference (CAV), 2000.

F. Somenzi. CUDD: CU Decision Diagram package — release 2.1.2. Department of
Electrical and Computer Engineering — University of Colorado at Boulder, April
1997.

