
MCT99
A Hands-on Tutorial on Model Checking

— NUSMV —

FLoC’99

2-4 July, Trento, Italy

Alessandro Cimatti

Marco Pistore

Marco Roveri

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Part I: Basic of NUSMV and SMV language

2-4 July, Trento, Italy 1

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

An Overview of NUSMV

� NUSMV is an OBDD-based symbolic model checker.

� Uses a structured language to describe finite-state systems.

� It is oriented to the verification of synchronous systems.

� Allows to model check CTL and LTL specifications.

� When the specification is not satisfied, it produces a counterexample.

� Allows to simulate the specified model.

2-4 July, Trento, Italy 2

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

An Overview of NUSMV

� NUSMV is a reengineering/reimplementation and extension of SMV [McM93].

� SMV was developed by K. McMillan at CMU. It was the first symbolic model

checker.

� NUSMV is the result of a joint project between CMU and ITC-IRST involving

A. Cimatti, E. Clarke, F. Giunchiglia, A. Morichetti, M. Roveri.

� NUSMV is under ongoing development.

� NUSMV is available at the URL:

http://afrodite.itc.it:1024/˜nusmv

2-4 July, Trento, Italy 3

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

The first SMV program

MODULE main
VAR

b0 : boolean;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

b0!b0

0 1

2-4 July, Trento, Italy 4

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Declaring state variables

The SMV language provides booleans, enumerative and bounded integers as data

types:

boolean:

VAR
x : boolean;

enumerative:

VAR
st : fready, busy, waiting, stoppedg;

integers (bounded):

VAR
n : 1..8;

2-4 July, Trento, Italy 5

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Adding a state variable

MODULE main
VAR

b0 : boolean;
b1 : boolean;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

Remarks

☞ The new state space is the cartesian product of the ranges of the variables.

☞ Synchronous composition between the “subsystems” for b0 and b1.

!b1

b1

2-4 July, Trento, Italy 6

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Declaring the set of initial states

☞ For each variable, we constrain the values that it can assume in the initial

states.

init(<variable>) := <simple_expression> ;

☞ <simple expression> must evaluate to values in the domain of <variable>.

☞ If the initial values for a variable are not specified, then they can be any in the

domain of the variable.

2-4 July, Trento, Italy 7

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Declaring the set of initial states

MODULE main
VAR

b0 : boolean;
b1 : boolean;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

init(b1) := 0;

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

2-4 July, Trento, Italy 8

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Expressions

☞ Expressions in SMV do not necessarily evaluate to one value.

☞ They can represent several possible values.

☞ Alternatively, we can say that an expression evaluates to a set of values, from

which one may be choosen.

☞ A constant c is considered as a synctatic abbreviation for {c} (the singleton

containing c).

☞ The meaning of := in assignements is that the lhs can assume non

deterministically a value in the set the rhs evaluate to.

init(x) := f1,2,3g;

2-4 July, Trento, Italy 9

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Expression (cont.)

☞ Arithmetic operators:

+ - * / (integer division) mod - (unary)

☞ Comparison operators:

= > < <= >=

☞ Logic operators:

& | ! (unary, logical not) -> <->

☞ Set operators:

in (set inclusion) union (set union)

☞ Conditional expression:

case
e1 : e2;
e3 : e4;
...

esac

if e1 then e2 else if e3 then e4 else . . .

2-4 July, Trento, Italy 10

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Declaring the transition relation

☞ The transition relation is specified by constraining the values that variables can

assume in the next state.

next(<variable>) := <next_expression> ;

☞ <next expression> depends on “current” and “next” variables;

☞ it must evaluate to values in the domain of <variable>.

☞ If no next() assignment is specified for a variable, then the variable can

evolve non deterministically, i.e. it is unconstrained.

☞ Unconstrained variables can be used to model non-deterministic inputs to the

system.

2-4 July, Trento, Italy 11

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Declaring the transition relation

MODULE main
VAR

b0 : boolean;
b1 : boolean;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

init(b1) := 0;
next(b1) := ((!b0 & b1) | (b0 & !b1));

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

0 1

2 3

2-4 July, Trento, Italy 12

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Specifying normal assignements

☞ Normal assignements constrain the current value of a variable to the value of

other current variables.

☞ They can be used to model outputs of the form O(y; x), where y is the vector of

output variables, and x is the vector of state variables.

☞ Normal assignements have the following form:

<variable> := <simple_expression> ;

☞ <simple expression> must evaluate to values in the domain of the

<variable>.

2-4 July, Trento, Italy 13

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Specifying normal assignements

MODULE main
VAR

b0 : boolean;
b1 : boolean;
out : 0..3;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

init(b1) := 0;
next(b1) := ((!b0 & b1) | (b0 & !b1));

out := b0 + 2*b1;

0 1

2 3

2-4 July, Trento, Italy 14

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Restrictions on the ASSIGN

For technical reasons, the transition relation must be total.

I.e., for every state there must be at least one successor state.

To guarantee that the specified program yields a total transition relation, the

following restrictions are applied:

☞ Single assignment rule – Each variable may be assigned only once in the

program.

☞ Circular dependencies rule – A variable cannot have “cycles” in its

dependency graph that are not broken by delays.

2-4 July, Trento, Italy 15

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Single assignment rule

None of the following combinations of assignments is legal:

next(status) := ready; init(status) := ready;

status := ready; status := ready;

init(status) := ready; next(status) := ready;

init(status) := busy; next(status) := busy;

status := ready;

status := busy;

2-4 July, Trento, Italy 16

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Circular dependencies rule

None of the following combinations of assignments is legal:

x := (x + 1) mod 2; next(x) := z & next(x);

x := (y + 1) mod 3; next(x) := x & next(y);

y := (x - 1) mod 3; next(y) := next(z) & y;

next(z) := z & next(x);

2-4 July, Trento, Italy 17

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

The modulo 4 counter with reset

The counter can be reset by an external reset signal.

MODULE main
VAR

b0 : boolean;
b1 : boolean;
reset : boolean;
out : 0..3;

ASSIGN
init(b0) := 0;
next(b0) := case

reset = 1 : 0;
reset = 0 : !b0;

esac;

init(b1) := 0;
next(b1) := case

reset : 0;
1 : ((!b0 & b1) | (b0 & !b1));

esac;

out := b0 + 2*b1;

2

0 1

3

2-4 July, Trento, Italy 18

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Specifying CTL properties

☞ CTL properties are specified via the keyword SPEC:

SPEC <ctl_expression>

☞ It is possible to reach a state in which out = 3.

SPEC
EF out = 3

☞ A state in which out = 3 is always reachable.

SPEC
AF out = 3

☞ It is always possible to reach a state in which out = 3.

SPEC
AG EF out = 3

☞ An execution leading to a state in which out = 3 can be generated with the

specification:

SPEC
!EF out = 3

2-4 July, Trento, Italy 19

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

CTL specifications

NUSMV provides bounded CTL operators:

☞ There is no state that is reachable in 3 steps where out = 3 holds.

SPEC
!EBF 0..3 out = 3

☞ A state in which out = 3 is reachable in 2 steps.

SPEC
ABF 0..2 out = 3

☞ Invariantly a state in which out = 3 is reachable in 3 steps.

SPEC
AG ABF 0..3 out = 3

2-4 July, Trento, Italy 20

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Quantitative characteristics computations

☞ It is possible to compute the minimum and maximum length of the paths

between two specified conditions.

☞ For instance, the shortest path between a state in which out = 0 and a state

in which out = 3 is computed with

COMPUTE
MIN [out = 0 , out = 3]

☞ The length of the longest path between a state in which out = 0 and a state in

which out = 3.

COMPUTE
MAX [out = 0 , out = 3]

2-4 July, Trento, Italy 21

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Introducing Fairness Constraints

Let us consider again the counter with reset.

☞ The specification AF out = 1 is not verified.

☞ On the path where reset is always 1, then the system loops on a state where

out = 0, since the counter is always reset:

reset = 1,1,1,1,1,1,1...

out = 0,0,0,0,0,0,0...

☞ Analogous considerations hold for the property AF out = 2. For instance,

the sequence:

reset = 0,1,0,1,0,1,0...

generates the loop:

out = 0,1,0,1,0,1,0...

which is a counterexample to the given formula.

2-4 July, Trento, Italy 22

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Fairness Constraints

☞ NUSMV allows to specify fairness constraints.

☞ Fairness constraints are CTL formulas which are assumed to be true infinitely

often in all the execution paths of interest.

☞ During the verification of properties, NUSMV considers path quantifiers to

apply only to fair paths.

☞ Fairness constraints are specified as follows:

FAIRNESS <ctl_expression>

2-4 July, Trento, Italy 23

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Fairness Constraints

With the fairness constraint

FAIRNESS
out = 1

we restrict our analysis to paths in which the property out = 1 is true infinitely

often.

The property AF out = 1 under this fairness constraint is now verified.

The property AF out = 2 is still not verified.

Adding the fairness constraint out = 2, then also the property AF out = 2 is

verified.

2-4 July, Trento, Italy 24

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Exercise 1: Mutual Exclusion

A two-users mutual exclusion:

☞ We have two users U1 and U2, and an Arbiter.

☞ Each user can be either NonCritical, Trying or Critical.

☞ From NonCritical, it can nondeterministically go to Trying.

☞ From Trying, it can go to Critical when enabled by the arbiter.

☞ From Critical, it goes back to NonCritical in at most 4 time units.

Design the Arbiter, the users, and . . .

☞ Verify that the two users cannot be at the same time in their Critical section.

☞ Verify that if a user tries to enter its critical section, it will eventually succeed.

☞ Compute the maximum time needed to enter the critical section.

2-4 July, Trento, Italy 25

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Part II: Advanced features of NUSMV

2-4 July, Trento, Italy 26

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

The DEFINE declaration

☞ Defined symbols do not require extra BDD variables creation.

☞ Each occurrence of a defined symbol in a specification is replaced with the

body of the definition.

☞ The BDD corresponding to the body of defined symbols becames part of each

expression using the defined symbol.

☞ It is similar to a macro definition.

2-4 July, Trento, Italy 27

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

The DEFINE declaration

MODULE main
VAR

b0 : boolean;
b1 : boolean;
b2 : boolean;

ASSIGN
init(b0) := 0;
init(b1) := 0;
init(b2) := 0;

next(b0) := !b0;
next(b1) := (!b0 & b1) | (b0 & !b1);
next(b2) := ((b0 & b1) & !b2) | (!(b0 & b1) & b2);

DEFINE
out := b0 + 2*b1 + 4*b2;
reset := b0 & b1 & b2;

2-4 July, Trento, Italy 28

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Arrays

The SMV language provides also the possibility to define arrays of basic data

types (and arrays of arrays).

VAR

x : array 0..10 of booleans;

y : array 2..4 of 0..10;

z : array 0..10 of array 0..5 of fred, green, orangeg;

ASSIGN
init(z[3][2]) := fgree, orangeg;

☞ Remark: Array indexes in SMV must be constants.

2-4 July, Trento, Italy 29

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Using propositional formulas to specifyM

The SMV language allows to specify M using propositional formulas:

<init declaration> ::- ‘INIT’ <simple expr>

<trans declaration> ::- ‘TRANS’ <next expr>

<invar declaration> ::- ‘INVAR’ <simple expr>

☞ No checks performed on these formulas.

☞ Logical absurdities can be introduced.

☞ Not recommended unless you know what you are doing.

☞ Very useful for writing translators from other languages to NUSMV.

2-4 July, Trento, Italy 30

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Using propositional formulas to specifyM

The following SMV program:

MODULE main
VAR

request : boolean; state : fready,busyg;
ASSIGN

init(state) := ready;
next(state) := case

state = ready & request : busy;
1 : fready,busyg;

esac;

is equivalent to:

MODULE main
VAR

request : boolean; state : fready,busyg;
INIT

state = ready
TRANS

(state = ready & request) -> next(state) = busy

2-4 July, Trento, Italy 31

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Modules

☞ Modules in SMV are a bundle of definitions that can be reused.

☞ Modules are composed by instantiating them inside another module.

☞ Instantiation is performed inside the VAR declaration of a module.

☞ They can have formal parameters, which are substituted with the actual

parameters when the module is instantiated.

☞ Actual parameters can be any legal expression.

☞ The semantic of module instantiation and parameters passing is similar to

call-by-reference.

☞ All the variables of an instance of a module can be passed to another module

by passing the module instance name as argument.

2-4 July, Trento, Italy 32

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Example: The modulo 8 counter revisited

MODULE counter_cell(tick)

VAR
value : boolean;

ASSIGN
init(value) := 0;
next(value) := case

tick = 0 : value;
tick = 1 : (value + 1) mod 2;

esac;

DEFINE
done := tick & (((value + 1) mod 2) = 0);

tick is the formal parameter of module counter cell.

2-4 July, Trento, Italy 33

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Example: The modulo 8 counter revisited

Module counter cell is instantiated three times.

MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.done);
bit2 : counter_cell(bit1.done);
out : 0..7;

ASSIGN
out := bit0.value + 2*bit1.value + 4*bit2.value;

In the instance bit0, the formal parameter tick is replaced with the actual

parameter 1.

When a module is instantiated all variables/symbols defined in it are preceeded by

the module instance name, so that they are unique to the instance.

2-4 July, Trento, Italy 34

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Restriction on MODULE declaration

☞ There must be a module main in a SMV specification.

☞ The module main has a special meaning in the SMV language, in the same

way that it does in the C programming language.

☞ There must be no recursively defined modules.

☞ You cannot instantiate with the same name two modules.

☞ All the variables declared in a module instance are visible in the module in

which it has been instantiated via the dot notation.

2-4 July, Trento, Italy 35

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Module hierarchies

A module can contain instances of others modules provided the module references

are not circular.

MODULE counter_8 (tick)
VAR

bit0 : counter_cell(tick);
bit1 : counter_cell(bit0.done);
bit2 : counter_cell(bit1.done);
out : 0..7;

DEFINE
done := bit2.done;

ASSIGN
out := bit0.value + 2*bit1.value + 4*bit2.value;

2-4 July, Trento, Italy 36

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Module hierarchies (cont.)

-- A counter modulo 512

MODULE main
VAR

b0 : counter_8(1);
b1 : counter_8(b0.done);
b2 : counter_8(b1.done);
out : 0..511;

ASSIGN
out := b0.out + 8*b1.out + 64*b2.out;

SPEC
AF b2.bit2.done

SPEC
!EF out = 511

2-4 July, Trento, Italy 37

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Exercise 2

Use modules and arrays to

� Extend the mutual exclusion controller of exercise 1 to a generic number of

users.

� Implement the read-write lock algorithm described below:

A Readers/Writer lock controls the access to a resource (for instance a

cache memory) that can be read simultaneously by many users, but that

can be written only by a user that has an exclusive access.

In any moment the resource can be:

– either unused,

– or accessed in read mode by one or more users,

– or accessed in read-write mode by an exclusive user.

2-4 July, Trento, Italy 38

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Exercise 3

Design a traffic lights controller of an intersection where a two-way street running

north and south intersects a one way street running West, such that collisions are

avoided and cars do not wait forever at red light.

N

E
W

S

SouthEast

North

2-4 July, Trento, Italy 39

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Exercise 3 – hints

☞ We need a sensor for each direction to indicate the presence of a car in that

direction. It can be considered an input to the system.

☞ We need for each direction a variable to indicate the color of the light.

☞ We need a lock that is set when the traffic is enabled in North-South directions,

and prevents East light to became green.

☞ We need a boolean variable for each direction to remember if there has been

or not a request.

2-4 July, Trento, Italy 40

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Partitioning the transition relation

The basic computation in symbolic model checking is the relational product:

S(x

0

) = 9x:(S(x) ^R(x; x

0

))

☞ There are efficient algorithms for computing S(x

0

), without building the

conjunction, but . . .

� operation is complex;

� monolithic R sometimes is too large;

☞ Avoid building R by partitioning.

2-4 July, Trento, Italy 41

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Conjunctive Partitioning

Represent R as an implicitly conjoined list of smaller transition relation.

R(x; x

0

) =

n

^

i=0

R

i

(x; x

0

)

and thus perform early quantification:

S(x

0

) = 9x:(S(x) ^ R(x; x

0

)) =

= 9x:(S(x) ^

V

n
i=0

R

i

(x; x

0

)) =

= 9x

n

(: : :9x

1

(9x

0

(S(x) ^ R

0

(x; x

0

))

| {z }

S

0

^R

1

(x; x

0

))

| {z }

S

1

: : : ^ R

n

(x; x

0

))

| {z }

S

n

2-4 July, Trento, Italy 42

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Conjunctive partitioning in NUSMV

NUSMV provides two conjunctive partioning heuristics.

☞ Conjunctive partitioning in NUSMV is actually only available for synchronous

systems.

☞ Individual next() assignments are grouped into partitions whose size in terms

of BDD nodes does not exceed a given threshold.

☞ A refinement of the above. Individual next() assignments are grouped into

partitions whose size in terms of BDD nodes does not exceed a given

threshold. Then the partitions are ordered according to an heuristic in order to

improve image computation efficiency [RAP+95].

2-4 July, Trento, Italy 43

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Variable Ordering

☞ NUSMV uses BDDs to encode states.

☞ The order of the varibles can have a big inpact on the size of the BDD (for a

given formula) and thus on the performances.

(A$ B) ^ (C$ D)

B

D

01

D

C

B

A

BB

C

D

B

01

D

B

C

A

A, B, C, D A, C, B, D

2-4 July, Trento, Italy 44

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Variable Ordering

The default ordering used by NUSMV is the order in which the variables are

declared in a depth-first traversal of the module hierarchy starting from the module

main.

MODULE counter_cell(tick)
VAR

value : boolean;
ASSIGN

init(value) := 0;
next(value) := case

tick = 0 : value;
tick = 1 : (value + 1) mod 2;

esac;
DEFINE

done := tick & (((value + 1) mod 2) = 0);

MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.done);
bit2 : counter_cell(bit1.done);
out : 0..7;

ASSIGN
out := bit0.value + 2*bit1.value + 4*bit2.value;

The default ordering is: bit0.value, bit1.value, bit2.value, out

2-4 July, Trento, Italy 45

MCT’99 – A Hands-on Tutorial on Model Checking: NUSMV – Marco Roveri - IRST

Variables Ordering

☞ NUSMV allows the user to specify the order of the variables.

☞ A “good” variable order can be specified by hand or generated automatically by

automatic variable reordering algorithms (NUSMV provides 19 different

algorithms).

☞ If in the previous example we use the variable ordering:

bit0.value, out, bit1.value, bit2.value

The the size of the transition relation changes from 32 BDD nodes to 23 BDD

nodes.

2-4 July, Trento, Italy 46

