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Abstract

This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between

CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of

the CMU SMV model checker. The core of this paper consists of a detailed description of the NUSMV functionali-

ties, architecture, and implementation.

Key words Symbolic Model Checking – Temporal Logics – Automatic verification – Tools for technology trans-

fer.

1 Introduction

This paper describes the results of a joint project between Carnegie Mellon University (CMU) and Istituto per la

Ricerca Scientifica e Tecnologica (IRST) whose goal is the development of a new symbolic model checker.1 The new

model checker, called NUSMV, is designed to be a well structured, open, flexible and documented platform for model

checking. To be usable in technology transfer projects, NUSMV was designed to be very robust, easy to modify, and

close to the standards required by industry.

NUSMV is the result of the reengineering and reimplementation of the CMU SMV [47, 26] symbolic model

checker. With respect to CMU SMV, NUSMV has been upgraded along three dimensions.

� From the point of view of the system functionalities, NUSMV has some features (e.g., multiple interfaces, LTL

specifications) that enhance the user ability to interact with the system, and provide more heuristics for, e.g.,

achieving efficiency or partially controlling the state explosion.

� The system architecture of NUSMV is highly modular (thus allowing for the substitution or elimination of

certain modules) and open (thus allowing for the addition of new modules). A further feature is that in NUSMV

the user can control, and possibly change, the order of execution of some system modules.

� The quality of the implementation is much enhanced. NUSMV is a very robust and well documented system,

whose code is (relatively) easy to modify.

The paper is organized as follows: in Section 2 we briefly introduce the logical framework below symbolic model

checking; Section 3 describes the interaction with the system; Section 4 explains the functionalities provided by

the system; Section 5 describes the NUSMV system architecture; Section 6 describes the NUSMV implementation

features. Finally, Section 7 describes the results of some tests and future development directions.

NUSMV is available at the url “http://sra.itc.it/tools/nusmv”.

1The material presented in this paper is self-contained. This paper is readable with ordinary efforts for someone with some background in formal

methods.
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Figure 1: A State Transition Graph and its unwinding.

2 Symbolic Model Checking

The most widely used verification techniques are testing and simulation. In the case of complex, asynchronous sys-

tems, however, these techniques can cover only a limited portion of possible behaviors. A complementary verification

technique is Temporal Logic Model Checking [23, 28, 51]. In this approach, the verified system is modeled as a finite

state transition system, and the specifications are expressed in a propositional temporal logic. Then, by exhaustively

exploring the state space of the state transition system, it is possible to check automatically if the specifications are

satisfied. The termination of model checking is guaranteed by the finiteness of the model. One of the most important

features of model checking is that, when a specification is found not to hold, a counterexample (i.e., a witness of the

offending behavior of the system) is produced.

2.1 Temporal Logic

A finite state system can be described as a tuple:

M =< S; I;R;L >

where S is a finite set of states, I � S is the set of initial states, and R � S � S is the transition relation, specifying

the possible transitions from state to state. L is a function that labels states with the atomic propositions from a given

language. Such a tuple is called state transition graph or Kripke structure [44].

Temporal logics are used to predicate over the behavior defined by Kripke structures. A behavior in a Kripke

structure is obtained starting from a state s 2 I, and then repeatedly appending states reachable through R. We

require that the transition relation R be total.2 As a consequence all the behaviors of the system are infinite. Since a

state can have more than one successor, the structure can be thought of as unwinding into an infinite tree, representing

all the possible executions of the system starting from the initial states. Figure 1 shows a state transition graph and its

unwinding from the state labeled with “A”.

Two useful temporal logics are Computation Tree Logic (called CTL) and Linear Temporal Logic (called LTL).

They differ in how they handle branching in the underlying computation tree. In CTL temporal operators it is possible

to quantify over the paths departing from a given state. In LTL operators are intended to describe properties of all

possible computation paths.

The syntax of CTL formulas is given by the following rules:

1. any atomic proposition is a CTL formula;

2. if � and � are CTL formulas, then � � � and :� are CTL formulas, where � is any boolean connective

(^;_; : : : );

3. if � and � are CTL formulas, then EX�, EG�, E[�U�℄ are CTL formulas.

Figure 2 describes the intuitive meaning of CTL formulas. EX� means that there exists (E) a path starting from a

state s
0

2 S in which in the next (X) state � holds. EG� means that there exists a path starting from a state s
0

in

which globally (G) � holds. E[�U�℄ there exists a path starting from a state s
0

in which � holds until (U) � holds.

The other CTL operators (e.g., AF�, meaning for all paths eventually �) can be derived from these three according

to the rules listed in Table 1.

2



AX� = :EX(:�) For all paths, in the next state �

EF� = E[>U�℄ There exists a path in which eventually �

AG� = :EF(:�) Invariantly �

A[�U�℄ = :E[:�U:� ^ :�℄ ^ :EG:� For all paths, � until �

AF� = A[>U�℄ For all paths, eventually �

Table 1: Definition of CTL operators.
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Figure 2: The meaning of temporal modalities.

The syntax of LTL formulas is the following:

1. any atomic proposition is an LTL formula;

2. if � and � are LTL formulas, then ��� and:� are LTL formulas, where � is any boolean connective (^;_; : : : );

3. if � and � are LTL formulas, then X�, G�, [�U�℄ are LTL formulas.

The model checking problem can be formally formulated as follows. Given a Kripke structureM and a temporal

logic formula ', find the set of all states that satisfy ', namely the set of states

fs 2 S j M; s j= 'g (1)

We say that the system satisfies the specification provided that all the initial states are in the set fs 2 S j M; s j= 'g:

I � fs 2 S j M; s j= 'g (2)

Each CTL formula ' is identified by the set of states where it holds, fs 2 SjM; s j= 'g. CTL operators may be

characterized as a least or a greatest fixpoint of an appropriate predicate transformer [12]:

� EG� = gfp

Z

[� ^ EXZ℄

� E[�U�℄ = lfp

Z

[� _ (� ^ EXZ)℄

This suggests an algorithm for symbolic model checking which is driven by the structure of the formula. For example,

the computation of E[�U�℄ = lfp

Z

[� _ (� ^ EXZ)℄ corresponds to the following iterations:

s

0

= ?

s

1

= � _ (� ^EX

s

0

z}|{

? ) = �

s

2

= � _ (� ^EX

s

1

z}|{

� )

s

3

= � _ (� ^EX

s

2

z }| {

(� _ (� ^ EX�)))

: : :

Iterations continue until s
i+1

= s

i

. The existence of least and greatest fixpoints is guaranteed by the monotonicity of

the predicate transformers and by the finiteness of the domain [12].

2A transition relation R � S � S is total if and only if for each state s 2 S there exists a state s

0

2 S such that (s; s0

) 2 R.
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Figure 3: A BDD for the formula “(a1 iff a2) and (b1 iff b2)”.

2.2 Symbolic Representation of Kripke Structures

The first model checking algorithms used an explicit representation of the Kripke structure as a labeled, directed

graph [23, 28, 51].3A major improvement was achieved with the use of symbolic representations [29, 49, 59, 12, 47],

based on the use of Ordered Binary Decision Diagrams [7, 8] (BDDs for short). BDDs are a representation for boolean

formulas, which is canonical once an order on the variables has been established. Figure 3 depicts the BDD for the

boolean formula (a

1

$ a

2

) ^ (b

1

$ b

2

), using the variable ordering a

1

; a

2

; b

1

; b

2

. Solid lines represent “then”

arcs (the corresponding variable has to be considered positive), dashed lines represent “else” arcs (the corresponding

variable has to be considered negative). Paths from the root to the node labeled with “1” represent the satisfying

assignments of the represented boolean formula (e.g., a
1

 1; a

2

 1; b

1

 0; b

2

 0). Intuitively, a state of

the system is symbolically represented by an assignment of boolean values to the set of state variables.4 A boolean

formula (and thus its BDD) is a compact representation of the set of the states represented by the assignments which

make the formula true. Similarly, the transition relation can be expressed as a boolean formula in two sets of variables,

one relative to the current state and the other relative to the next state.

This makes it possible to represent predicate transformers and fixpoints as BDDs. The basic boolean operations are

handled by means of standard algorithms for computing boolean connectives with BDDs [7, 8], and fix-point algorithms

can be easily implemented in terms of basic BDD operations [12, 47].

The basic computation step in the previously described predicate transformers is the computation of the states

satisfying EX�. Let �(x) be a boolean formula on the boolean variables x, where x is a vector of boolean state

variables, representing the set of states satisfying �. The set of states satisfying EX� can be computed as:

(EX�)(x) = 9x

0

:(�(x)[x

0

=x℄ ^ R(x; x

0

))

Where with �(x)[x0=x℄ we mean the simultaneous substitution in �(x) of variables x with the corresponding variables

x

0. This operation, called Relational Product [47], is performed as an atomic operation on BDDs.

The set fs 2 S j M; s j= 'g can be computed using basic BDDs operations plus fixpoint characterization of

the CTL operators. Formally, the check which determines whether the model verifies a property ' (see Equation 2)

reduces to the following check between BDDs:

:' ^ I = ?

2.3 Fields of Application

The use of BDDs (i.e. the implicit representation of the transition system) makes it possible to verify very large systems

(larger than 10

20 states [12, 47, 11]). Symbolic model checking has been successful in various fields, allowing the

discovery of design bugs that were very difficult to highlight with traditional techniques. Some of the most significant

results are given below (an extensive discussion of the applications of symbolic model checking can be found in [27]):

3This is almost true. However, the very first implementation of the CESAR tool was a symbolic model checker. See [52] for more details.
4For non boolean state variables a boolean encoding can be performed.
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� in [22] the authors applied this technique to verify the cache coherence protocol described in the IEEE Future-

bus+ Standard 896.1.1991. They found a number of previously undetected and potential errors in the design of

the protocol.

� in [47, 46] the authors verified the cache consistency protocol developed at Encore Compute Corporation for

their Gigamax distributed multiprocessor.

� in [31] the cache coherence protocol of the Scalable Coherent Interface, IEEE Standard 1596-1992 was verified,

and several errors were found.

� in [1] the authors verified part of a preliminary version of the system requirement specifications of TCAS II

(Traffic Alert and Collision Avoidance System II). TCAS II is an aircraft collision avoidance system required

on most commercial aircraft in United States.

� in [18, 39] model checking techniques are used in the verification of a railway interlocking system.

3 NUSMV: Look and Feel

3.1 The SMV specification language

The current NUSMV input language [19] is essentially the same as the CMU SMV input language [47, 26]. The

NUSMV input language is designed to allow for the description of finite state systems. The only data types provided

by the language are booleans, bounded integer subranges, and symbolic enumerated types. Moreover, NUSMV allows

for the definitions of bounded arrays of basic data types.

The description of a complex system can be decomposed into modules, and each of them can be instantiated many

times. This provides the user with a modular and hierarchical description, and supports the definition of reusable

components. Each module defines a finite state machine. Modules can be composed either synchronously or asyn-

chronously using interleaving. In synchronous composition a single step in the composition corresponds to a single

step in each of the components. In asynchronous composition with interleaving a single step of the composition

corresponds to a single step performed by exactly one component. The NUSMV input language allows to describe

deterministic and non deterministic systems.

A NUSMV program can describe both the model and the specification. Figure 4 gives a small example of a NU-

SMV program. The example in Figure 4 is a model of a 3 bit binary counter circuit. It illustrates the definition of

reusable modules and expressions.

The module counter cell is instantiated three times, with names bit0, bit1 and bit2. The module

counter cell has a formal parameter carry in. In the instantiation of the module, actual signals (1 for the in-

stance bit0, bit0.carry out for the instance bit1 and bit1.carry out for the instance bit2) are plugged

in for the formal parameters, thus linking the module instance to the program (a module can be seen as a subroutine).

The property that we want to check is “invariantly eventually the counter count till 8” which is expressed in CTL using

the design state variables as “AG AF bit2.carry out”.

It is also possible to specify the transition relation and the set of initial states of a module by means of propositional

formulas, using the keywordsTRANS, and INIT respectively. This provides the user with a lot of freedom in designing

systems. In Figure 5 there is an equivalent definition of module counter cell using propositional formulas.

With respect to CMU SMV, the input language of NUSMV has been extended to allow for the specification of

properties expressed in LTL and the specifications of invariants [19].

3.2 The interaction with NUSMV

NUSMV has both a batch and an interactive mode. The batch mode offers a built-in method for dealing with the

system in which computations are activated according to a fixed predefined algorithm. The batch mode provides an

interaction with the system that is essentially the same provided by CMU SMV.

In the interactive mode computation steps are activated by commands executed by a command line interpreter, thus

allowing for the modification of the predefined model checking algorithm. The definition of the interactive shell

required the decomposition of the model checking algorithm into small basic computation steps (e.g., parsing, model
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MODULE main
VAR
bit0 : counter cell(1);
bit1 : counter cell(bit0.carry out);
bit2 : counter cell(bit1.carry out);

SPEC
AG AF bit2.carry out

MODULE counter cell(carry in)
VAR
value : boolean;

ASSIGN
init(value) := 0;
next(value) := value + carry in mod 2;

DEFINE
carry out := value & carry in;

Figure 4: A simple NuSMV program.

MODULE counter cell(carry in)
VAR
value : boolean;

INIT
value = 0

TRANS
next(value) <-> ((!value & carry in) | ( value & !carry in))

DEFINE
carry out := value & carry in;

Figure 5: An equivalent definition of module counter cell of the example described in Figure 4.
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construction, reachability analysis, model checking). In the current version of the system, each of them corresponds

to a command that implements a different functionality.

The three modes of interaction with the NUSMV system, namely, the interactive shell, the batch mode and the

graphical user interface are described below.

3.2.1 The NUSMV interactive shell

In this mode the system enters a read-eval-print loop. The user can activate the various NUSMV computation steps as

system commands with different options. These steps can therefore be invoked separately, possibly undone or repeated.

These steps include the construction of the model in different ways and the model checking of specifications.

The NUSMV interactive shell allows for the full configuration of the BDD options. For instance, several automatic

variable ordering methods and cache configuration mechanisms can be suitably tuned according to the application.

Moreover, the NUSMV interactive shell provides the user with a script language that makes it possible to define

different model checking algorithms that can be invoked as model checking tactics. These algorithms are provided via

parameterized scripts.

The interactive shell of NUSMV is activated from the system prompt as follows (“NuSMV>” is the default prompt

that NUSMV prints out to indicate that it is ready to evaluate commands):

system_prompt> NuSMV -int
NuSMV release 1.0 (compiled 11-Nov-98 at 8:28 PM)
NuSMV >

In Figure 6 we can see a typical interaction with NUSMV through the interactive shell.5 The file “counter.smv”

contains the example depicted in Figure 4. The verification process in NUSMV can be decomposed into the following

sequence of basic steps.

1. The first step towards verification is reading the model. This is performed by typing the NUSMV command

read model. This command takes as argument a file name containing the model specification. After the

correct execution of this command an internal representation of the read file is built and stored.

2. The second step consists in transforming the hierarchical description into a flattened description. This is per-

formed by typing the command flatten hierarchy. After the correct execution of this command all the

information needed to build the automaton is separated out (e.g., the variable names, their range, a symbolic

representation of the initial states and of the transition relation of the flattened system).

3. The third step consists in the encoding of the scalar variables into boolean variables. The NUSMV command

build variables is responsible for this task. It takes an optional argument specifying a file containing

the ordering in which the variables have to be built.6 As a default, the order of variables used by NUSMV

corresponds to the order in which the variables appear in a depth first traversal of the hierarchy [19].

4. The fourth step consists of the compilation of the structures built by the flatten hierarchy into BDDs

using the encoding performed by build variables. During this step some checks are performed that avoid

circular dependencies in assignments and multiple definitions [19]. The NUSMV command that implements

this step is build model. This command has an option specifying the partitioning method to be used, i.e.

monolithic, conjunctive, or disjunctive (see Section 4). It is possible to build first the transition relation in

different formats and then choose the most appropriate to the specific problem.

5. The fifth step deals with the fairness constraints [12]. This command can be executed only when all the previ-

ous commands have been executed. This is due to the fact that fairness constraints are CTL formulas whose

evaluation uses a previously computed transition relation.

After these five steps, the internal representation of the automaton is available to perform model checking.

5The output was slightly modified to make it more readable.
6This file can be generated by hand by the user or automatically by activating the automatic variable ordering to reduce the size of the BDDs and

saving the results with the write order command.

7



system prompt > NuSMV -int
NuSMV release 1.0 (compiled 11-Nov-98 at 8:28 PM)

1) NuSMV > read model -i counter.smv

2) NuSMV > flatten hierarchy

3) NuSMV > build variables

Building variables.....
bit0.value:

BDD variable 1, next BDD variable 2
bit1.value:

BDD variable 3, next BDD variable 4
bit2.value:

BDD variable 5, next BDD variable 6
4) NuSMV > build model

checking for multiple assignments...
checking for circular assignments...
evaluating INIT statements...
evaluating init() assignments...

evaluating value:
size of value = 3 ADD nodes
evaluating value:
size of value = 3 ADD nodes
evaluating value:
size of value = 3 ADD nodes

size of global initial set = 1 states, 5 ADD nodes
evaluating TRANS statements...
evaluating next() assignments...

evaluating next(value):
size of next(value) = 5 ADD nodes
evaluating next(value):

evaluating bit0.carry out:
size of bit0.carry out = 3 ADD nodes

size of next(value) = 7 ADD nodes
evaluating next(value):

evaluating bit1.carry out:
size of bit1.carry out = 4 ADD nodes

size of next(value) = 8 ADD nodes
size of transition relation = 14 BDD nodes
evaluating normal assignments...
evaluating INVAR statements...
size of invariant set = 8 states, 1 BDD nodes
The model has been built from file counter.smv.

5) NuSMV > compute fairness

6) NuSMV > compute reachable

Starting computation of reachable states....
iteration 0: BDD size = 4, frontier size = 4, states = 1
new frontier computed, size = 4
......
iteration 7: BDD size = 1, frontier size = 4, states = 8
new frontier computed, size = 1
done.

7) NuSMV > check spec

-- specification AG AF bit2.carry out is true
7) NuSMV > check spec AG AX bit2.carry out

-- specification AG AX bit2.carry out is false
-- as demonstrated by the following execution sequence
state 3.1:
bit0.carry out = 0
bit0.value = 0
bit1.carry out = 0
bit1.value = 0
bit2.carry out = 0
bit2.value = 0

state 3.2:
bit0.carry out = 1
bit0.value = 1
NuSMV >

Figure 6: A typical interaction with NuSMV via the interactive shell. NuSMV commands are in boldface.
8



6. It is possible to compute the set of reachable states, via the compute reachable command. This allows the

user to simplify the evaluation of all the specifications by restricting the search only to reachable states.

7. It is possible to start the verification of CTL specifications (via the check spec command), of LTL spec-

ifications (via the check ltlspec command), and of invariants (via the check invar command). All

these commands, if called with no arguments, apply to the specifications of the respective type, if any, listed

in the source file. Optionally a CTL, LTL or propositional formula can be given as an argument. In the tran-

script of Figure 6 first we check the property AG AF bit2.carry out (the execution of check spec
without arguments, thus verifying the properties listed in the input file). Then we check the property AG AX
bit2.carry out (invariantly in the next state bit2.carry out is 1). This property appear to be false

and a counterexample exploiting why the formula is not verified is computed and printed out.

3.2.2 The NUSMV batch mode

In this modality the system behaves mostly like the original CMU SMV. It performs some of the steps described previ-

ously in a fixed sequence. The sequence can be modified via command line options that enable different computations

at fixed positions.

In the batch mode the system executes the first five steps previously described. The computation of the reachable

states can be enabled before the computation of fairness constraints via the “-f” command line options. After the

first five steps, the system looks for specifications in the source file, following the verification of CTL formulas,

quantitative characteristics, LTL formulas and finally the invariants, if any. If the reordering of variables has been

enabled via the -reorder command line option at the end of the computation, the reordering of variables starts and

the generated ordering is saved into a file.

3.2.3 The NUSMV graphical user interface

On top of the interactive shell a graphical user interface (GUI from now on) was developed. The GUI is a separate

process and communicates with NUSMV via the interactive shell.

From the GUI it is possible to edit and to modify the file containing the model description. The editor window provides

the user with basic editing functionalities, such as copy and paste of blocks of text. Figure 7 gives a snapshot of the

editor window. The NUSMV GUI allows for the modification of the options in a menu driven way. A snapshot of

the window for setting system options is the small window in Figure 9. Moreover, the GUI offers a formula editor

that helps the user in writing new specifications (see Figure 8). Depending on the kind of formula to verify, various

buttons corresponding to temporal modalities and/or boolean connectives are activated. For instance in Figure 8 a

CTL specification was chosen (the radio-button relative to CTL formulas is selected), and all the boolean connectives

and the CTL operator buttons are active.

4 System Functionalities

The functionalities provided by NUSMV are described below. They are grouped in standard, advanced and user

functionalities.

4.1 Standard Functionalities

NUSMV offers all the standard model checking functionalities. A brief summary is reported below.

Encoding. In general it is very useful to represent systems using enumerated types. As symbolic algorithms work

on boolean variables, there is the need to encode propositions about non-boolean variables in the space of boolean

variables. There are different ways to perform this task. At the moment NUSMV provides the encoding used in CMU

SMV, which represents a finite range variable with a sequence of boolean variables. Consider a state variable st that

can assume the values fa; b; 
; d; eg. The propositions on the possible values of st can be encoded with three boolean

variables st
0

, st
1

and st

2

, as shown in Table 2.
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Figure 7: The NuSMV GUI editor window.

Figure 8: The NuSMV GUI formula editor window.
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Figure 9: The NuSMV GUI and the options setting window.

Symbolic Value Boolean Encoding

st = a st

0

= 0 ^ st

1

= 0 ^ st

2

= 0

st = b st

0

= 1 ^ st

1

= 0

st = 
 st

0

= 0 ^ st

1

= 1

st = d st

0

= 1 ^ st

1

= 1

st = e st

0

= 0 ^ st

1

= 0 ^ st

2

= 1

Table 2: The encoding of a variable “st” that can assume the values “a”, “b”, “c”, “d” and “e”.
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Notice that the value assigned to the boolean variable st
2

, in the case of st 2 fb; 
; dg, is indifferent, and it can

be either 0 or 1.7 The boolean variables used to encode a scalar variable are grouped together, and are considered

as a single block of variables in the BDD package. Other encoding policies can be more appropriate for variables

of different kind. For example, word level encodings are useful for the analysis of data paths [25]. Moreover, the

constraint of grouping the boolean variables together can be relaxed. Some of these policies will be codified in further

releases of NUSMV.

Reachability Analysis. NUSMV, (similarly to CMU SMV), offers an enhanced algorithm for reachability analysis.

The standard way to perform the computation of the reachable states Rea
hable(I), starting from the initial states

I, is:

Rea
hable(I) = R

k

(x)

where k is the minimum integer such that R
k

(x) = R

k+1

(x), and R
k

(x) is recursively defined as:

R

0

(x) = I

R

k+1

(x) = (9x:(R

k

(x) ^ T (x; x

0

)))[x=x

0

℄ [ R

k

(x)

x is the vector of state variables, T (�; �) is the transition relation and R

k

(x) is the set of states reached in k or fewer

steps.

The computation of the states reachable in k + 1 steps can be performed by considering only the frontier set F
k

(x) =

R

k

(x) ^ R

k�1

(x)

8:

R

k+1

(x) = (9x:(F

k

(x) ^ T (x; x

0

)))[x=x

0

℄ [R

k

(x)

We are planning to introduce new optimizations to the computation of the set of reachable states, such as the use of

don’t care sets. The set of reachable states can be used to simplify the following model checking computations.

Fair CTL model checking. NUSMV, similarly to CMU SMV, uses the algorithms presented in [12] as the basis

for fair CTL model checking. These algorithms are essentially based on a fix-point characterization of temporal

modalities and they work quite well in practice. If the set of reachable states has already been computed, the set of

reachable states is used in the evaluation of CTL formulas. This allows us to restrict the search to reachable states

only.

Check for Transition Relation Totality. In NUSMV it is possible to check the totality of the transition relation.

The check is performed by means of basic model checking operations:

T (�; �) is total if and only if EX(>) = ?

This functionality is very useful if the keywords TRANS or INVAR9 are used to specify the transition relation. In these

cases it is in fact possible to introduce deadlock states.

Counterexamples Generation. One of the most important functionalities of symbolic model checking is the ability

to generate a counterexample for unsatisfied properties. The algorithms used in NUSMV as a basis to perform the

computation of counterexamples are the same as those implemented in CMU SMV and are those presented in [24].

4.2 Advanced Functionalities

NUSMV provides advanced model checking functionalities, including specialized algorithms for the verification of

invariants, and heuristics aiming at the reduction of the state explosion problem. In the following these functionalities

are briefly explained.

7This has the effect that for examples the BDD representing the encoding of st = 
 is only in terms of the boolean variables st
0

and st

1

.
8IfA is a set, then with A we mean the complement set.
9INVAR specifies time invariants using propositional formulas.
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Bounded CTL. NUSMV allows expressing specifications in real-time CTL (RTCTL) [33]. For example, it is

possible to express that � always leads to � in 0 to 4 time units with the RTCTL specification10:

AG(�! AF

0::4

�)

It is assumed that a time unit corresponds to a step. This functionality is the same as in CMU SMV.

Invariant checking. An important class of CTL formulas is invariants, i.e., formulas of the formAG�, where � is

propositional formula. The semantics of this kind of formulas is that � is true in all reachable states. The computation

of this kind of formulas is based on a fix-point characterization [12]:

AG� = gfp

Z

[� ^AXZ℄

This approach is not very direct, and can be quite inefficient. If the set of reachable states has been previously

computed, then an invariant can be simply checked by performing a test of set inclusion between the states represented

by � and the set of reachable states:

Rea
hable(I) � �

NUSMV offers the possibility of checking invariants using either this or the standard model checking technique. These

functionalities are the same as in CMU SMV. Moreover NUSMV, w.r.t. CMU SMV, has a specialized routine for

checking invariants on the fly. This is performed by verifying at each step k of the reachability analysis the following

condition:

R

k

(x) � �

where R
k

(x) is the set of states reachable in k or fewer steps. If this test fails, then the invariant is not verified, and a

counterexample leading to a state not satisfying the property is provided.

Quantitative characteristics computation. In NUSMV it is possible to compute quantitative information on the

Kripke structure [14, 15]. In particular, it is possible to compute the exact bound on the delay between two specified

events, expressed as CTL formulas:

MIN[�; �℄ MAX[�; �℄

The MIN[�; �℄ computes the set of states reachable from �. When a state satisfying � is encountered, we return the

number of steps taken so far. If a fixed point is reached and no state satisfying � is found, then infinity is returned.

MAX[�; �℄ has the dual interpretation, and returns the length of the longest path from a state in � to a state in �. If

there exists an infinite path beginning in a state in � that never reaches a state in �, then infinity is returned. This

functionality is the same as in CMU SMV.

LTL model checking. LTL is important because it allows us to express properties, such as fairness,11 which are

not expressible in CTL. Furthermore, LTL can be useful to perform selective analysis, namely to specify the paths of

interest.

NUSMV supports LTL model checking implementing the algorithm presented in [32]. An LTL formula is auto-

matically converted into a tableau [45], which is then used to extend the original model in synchronous product. The

result is provided by checking the validity of an automatically generated CTL formula from the LTL specification in

the extended model.

The loose integration presented in [32] allows for the use of CMU SMV as a black box by generating a new input

file containing both the original description of the system and the code implementing the tableau. However, for each

LTL formula to be verified the verification process has to be restarted from scratch, starting from the parsing of the

newly generated input file. In NUSMV the tableau generation is tightly integrated. If more than one LTL property is

specified, only the generation of the corresponding tableau is required, thus avoiding, each time, the generation of the

whole model. The generated tableau is parsed in, compiled into BDD and synchronously composed with the original

model.12

10In the NUSMV input language this specification is written as SPEC AG(alpha -> ABF 0..4 beta)
11A typical fairness property is “if a process is infinitely often executable then it is infinitely often executed”, that corresponds to the LTL formula:

“GF(P:exe
utable)!GF(P:exe
uted)”.
12Other model checkers [6, 41] are able to perform LTL model checking. In VIS [6], for example, it is possible to perform LTL model checking

by using the language emptiness feature [60], but the user has to write by hand the automaton representing the acceptance condition of the LTL

formula, and for each formula a different input file has to be generated and the computation must restart from scratch.
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Partitioning of the model. One of the most important operations in model checking is the relational product:

9x:(S(x) ^ T (x; x

0

))

which computes the set of states reachable from S(x) through the transition relation T (�; �). This operation can be

performed as a single step by most BDD packages. Although it works quite well in practice, this operation has worst

case exponential complexity [47]. The transition relation is said to be monolithic, as it consists of a single BDD.

In many practical cases, building the BDD for T (�; �) may not be feasible. In many cases, however, it is possible to

exploit the structure of the system and build the transition relation as a list of small BDDs, called clusters, which are

implicitly disjoined (e.g., with an asynchronous model of concurrency) or conjoined (e.g., with synchronous systems)

[9, 10, 11].

T (�; �) =

_

i

T

i

(�; �) disjunctive

T (�; �) =

^

i

T

i

(�; �) conjunctive

In both cases the monolithic relational product is reduced to a sequence of disjunctively/conjunctively composed

relational products on the clusters.

With a disjunctively partitioned transition relation, the relational product can be computed as follows:

9x:(S(x) ^ T (x; x

0

)) = 9x:(S(x) ^

_

i

T

i

(x; x

0

)) =

_

i

9x:(S(x) ^ T

i

(x; x

0

))

In this way the relational product can be computed without ever building the BDD for the monolithic transition relation

by distributing the existential quantification over disjunctions. The relational product is decomposed into a series of

relational products involving relatively small BDDs.

For synchronous systems, NUSMV implements techniques based on early variable quantifications [59, 9, 10]. The

basic idea is to find an ordering of the partitions T
i

(�; �) such that the quantification can be pushed inside the formula

as much as possible, thus allowing relational products between small BDDs and existential quantification on a small

number of variables, and thus reducing the complexity of the whole operation:

9x:(S(x) ^ T (x; x

0

)) = 9x:(S(x) ^

V

i

T

i

(x; x

0

)) =

9x

1

:(9x

2

:(: : : (9x

n�1

:(9x

n

:(S(x) ^ T

n

(x; x

0

)))^

^T

n�1

(x; x

0

)) ^ : : : ^ T

1

(x; x

0

)))

where x
i

are disjoint sets of variables, x
i

being the set of variables the T
j

(�; �) with j > i depends on, but T
i

(�; �) does

not depend on.

NUSMV allows the user to perform model checking using the monolithic transition relation or the disjunctively or

conjunctively partitioned transition relation. For conjunctive partitioning, the heuristics described in [35] and in [53]

are available. They allow the user to compute the clusters for the conjunctively partitioned transition relation.

4.3 User Functionalities

The quality of interaction with the system is very important in several phases of the verification task. NUSMV provides

various user functionalities. In the following these functionalities will be briefly explained.

Counterexample navigation. The ability to generate counterexamples for properties that are not verified is very

useful in the design phase and is common to the majority of model checkers. In NUSMV it is also possible to navigate

and inspect counterexamples, similarly to what a programmer can do in a debugger for a programming language. The

user can jump from state to state, possibly between different counterexamples, and evaluate CTL expressions in a

given state of a counterexample, thus generating a possible new debug trace. These functionalities are available via

commands of the interactive shell.
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Figure 10: The NuSMV system architecture

On the fly modification of the model. The user might want to try to modify the model (e.g to try to fix a bug) or

add new fairness constraints without restarting the computation from scratch. In NUSMV this can be done using shell

commands that allow the user to modify interactively the model. The user can impose a new constraint on the set of

initial states, the set of invariant states or on the transition relation. Let I be the set of initial states, Inv the set of

invariants, T (�; �) the transition relation andH the set of fairness constraints. Then the modifications act as follows:

I := I \ I

a

Inv := Inv \ Inv

a

T (�; �) := T (�; �) \ T

a

(�; �) H := H [ fh

a

g

where I
a

, Inv
a

are the added set of initial states and invariant states respectively. T

a

(�; �) is the added transition

relation and h

a

is the new fairness constraint. Moreover, NUSMV allows the user to undo the modifications and

restore the original status of the system. This is useful in case the user wants to try further modifications.

Help on line. NUSMV features an on-line help functionality. Each command provided by the interactive shell has a

short help note describing briefly its options. Moreover, a complete description of each command is available via the

NUSMV interactive shell in text format and, via a web browser, in HTML format.

5 System Architecture

One of the most important features of NUSMV is that it is an open system, and can be easily modified, customized

or extended.13 This is possible because the architecture of NUSMV is structured and organized in modules. Each

module implements a set of functionalities and communicates with the others via a precisely defined interface. A

schema of the system architecture can be found in Figure 10. The modules implementing reduction techniques were

designed to work directly on the BDD representation, thus implementing their functionalities independently from the

13A similar philosophy of developing an open platform is advocated by the authors of the CADP tool-box [34].
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input language used to describe the system. This provides a clear distinction between the system back-end and front-

end. This clear distinction makes NUSMV open and usable in different fields, simply replacing or removing the

modules specific of the kind of input. Section 7.2 describes an example of extension of NUSMV.

The various modules of the architecture and the provided functionalities are described below.

Parser. This module provides all the parsing routines, which process a file written in NUSMV language, check its

syntactic correctness, and build a parse tree representing the internal format of the input file. The same parsing routines

are used to implement commands for the interaction shell, such as the specification at command line of new properties

to be verified.

Instantiation. This module processes the parse tree, and performs the instantiation of the declared modules, building

a description of the finite state machine (FSM) representing the model (e.g., the transition relation, the initial states,

the fairness).

Encoder. This module performs the encoding of data types and finite ranges into boolean domains. Having this

module as a separate one makes it possible to have different encoding policies that can be more appropriate for

different kinds of variables. Currently only the standard CMU SMV encoding is possible, but there are plans to

integrate into this architecture other forms of encoding, e.g., those used in Word-Level SMV [25].

The semantic check module. This module is responsible for all the necessary semantic checks on the model, e.g.,

the absence of circular definitions [47].

FSM Compiler. This module provides the routines for constructing and manipulating FSMs at the BDD level. The

FSMs can be represented in monolithic or partitioned form [9, 10, 11]. The heuristics used to perform the conjunctive

partitioning of the transition relation and reordering of the clusters [35, 53] were developed to work at the BDD level,

independently of the input language. This is a precise design choice: since NUSMV is intended to be applicable to a

wide range of domains, for which the current input language might not be appropriate, it is important that the heuristics

do not depend on the input language. Note that for a specialized model checker this might not be a suitable choice.

For instance, since VIS [6] is highly specialized for hardware, its heuristics were developed to work directly on the

BLIF format [56], which is a netlist14. The interface to other modules is given by the primitives for the computation of

image and pre-image of set of states. These primitives are independent from the method used to represent the transition

relation (monolithic, conjunctive or disjunctive).

Fairness. This module deals with the fairness constraints. It provides the model checking module with the informa-

tion contained in the fairness constraints, if any.

Model Checking. This module provides all the fRTgCTL model checking functionalities, such as reachability and

model checking routines, routines that perform computation of quantitative characteristics, and check invariants on

the fly. All these routines are based on the image and pre-image computation primitives, and are independent of the

particular method used to represent the FSM.

Explanation module. The routines for counterexamples and witness generation and inspection. Counterexamples

and witnesses can be produced with different levels of verbosity, in the form of reusable data structures, and can

subsequently be inspected and navigated. These routines are independent of the particular method used to represent

the FSM.

14A netlist is a representation of a design at the structural level. A FSM can be viewed as a behavioral description of the design. A netlist is much

closer to the implementation of the design than a simple FSM. A netlist is essentially the data structure used by many logic synthesis tools ,like

VIS[6], to internally represent designs derived from HDL descriptions.
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LTL module. The LTL module is a separate module that calls an external program that translates the LTL formula

into a tableau suitable to be loaded into NUSMV. This program also generates a new CTL formula to be verified on

the synchronous product of the original system and the generated tableau. This module was plugged in on top of the

other modules (e.g., the Parser, the Encoder, the FSM Compiler, the Model Checking and the Explanation modules),

thus reusing a lot of the functionalities already present in the architecture.

Kernel. The kernel provides the low level functionalities such as dynamic memory allocation, and manipulation

of basic data structures (e.g., cons cells, hash tables). The kernel also provides all the basic BDD primitives, which

are actually taken from the CUDD [57] BDD package. The CUDD package is a very complete BDD package, freely

available on the web. It provides all the basic BDD operations, plus a series of advanced BDD functionalities (such as

various state of the art BDD variable reordering algorithms, the possibility of grouping together variables in such a way

that the reordering algorithms treats them as a single element, algorithms to performBDDminimization, approximation

and decompositions, . . . ). The CUDD package is integrated in NUSMV with a precisely defined interface. This makes

it possible to replace the CUDD package with other state of the art BDD packages developed in the future, or with

commercial BDD packages (such as the TiGeR [30] BDD package). The NUSMV kernel can be used as a black box,

following coding standards that have been precisely defined.

Interactive shell. The interactive shell was designed on top of all the other modules. From the interactive shell the

user has full access to all the functionalities provided by the system. The interactive shell is fully extensible, thus

allowing for the development of new commands. (For more details see Section 3.2.1.)

Graphical user interface. The graphical user interface is a separate process, which communicates with NUSMV

by sending textual commands to the interactive shell. It allows the user to inspect and set the value of the environment

variables of the system, and provides full access to all the functionalities. Figures 7, 8 and 9 show some snapshots of

the graphical interface of NuSMV. (For more details see Section 3.2.3.)

6 Implementation

NUSMV was designed to be robust and easy to maintain and to modify. The features of the NUSMV implementation

are listed below. They are grouped depending the design task that they are intended to accomplish.

Robustness.

� NUSMV is written in ANSI C [55] and is POSIX [42] compliant. This makes the system portable to any

compliant platform. At the moment the system has been successfully compiled on various operating systems

and platforms (e.g., under Sun Solaris for SPARC and Intel X86, under SunOs 4.1.X, under various versions of

the Linux operating system).

� NUSMV has been throughly debugged with Purify15 to detect memory leaks and runtime memory corruption

errors. The use of this tool guarantees the elimination of runtime problems in all parts of the application, and

thus the delivery of a more reliable and robust application.

� The kernel of NUSMV provides low level functionalities, such as dynamic memory allocation, independently

from the underlying operating system and hardware platform. Moreover, it provides routines for the manipula-

tion of basic data structures such as cons cells, hash tables, arrays of generic types, and encapsulates the CUDD

BDD package [57].

Maintainability.

� In order to implement the architecture depicted in Section 5, the source code of NUSMV has been separated

into different packages. At the moment NUSMV is composed of 11 packages. Each package exports a set

of routines that manipulate the data structures defined in the package and modify the options associated to the

15More information on this tool can be found at the url “http://www.pureatria.com”.
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functionalities provided by the package itself. Moreover, each package is associated with a set of commands that

can be interpreted by the NUSMV interactive shell. We have packages for model checking, FSM compilation,

BDD interfacing, LTL model checking and kernel functionalities. New packages can be added relatively easily,

following precisely defined rules.

� The source code of NUSMV is maintained using a tool for revision controls. We use the RCS [58] tool provided

by GNU. It automates the storing, retrieval, logging and merging of revisions and provides a simple and user

friendly interface.

� In the coding, we have used an object-oriented programming style, following the ideas exploited by the VIS [6]

system.

� The code of NUSMV is documented following the standards of the ext tool.16 This tool allows for the auto-

matic extraction of the programmer manual from the source comments in the system code. The programmer

manual is available in TXT or HTML format, in a way that is browsable by an HTML viewer. This tool is also

used to generate the help on line available through the interactive shell and via the graphical user interface.

� The user manual is written following the standard TEXINFO[16]. This allows us to have the user manual available

in different formats (for instance POSTSCRIPT, PDF, DVI, INFO, HTML), directly from the NUSMV interactive

shell, via an HTML viewer or in hardcopy.

7 Conclusions

We have presented the NUSMV symbolic model checker. The NUSMV architecture provides a precise distinction

from the back-end (model checking algorithms, heuristics for optimal conjunctive partitioning, . . . ) and the front-end

(the input language). The NUSMV back-end is general purpose, and can be used not only for verifying hardware but

also for the verification in other fields in which systems can be modeled as an FSM (e.g., software,. . . ).

The rest of this section compares the performance of NUSMV and CMU SMV, describes the development of a

planner built on top of NUSMV, and some directions for future developments.

7.1 NUSMV vs. CMU SMV

The capabilities of NUSMV were tested on a series of examples taken from the literature, which were then used for a

comparison with the original CMU SMV. Below is a brief description of the tests used and their sources:

� the f4,8,10,11g-bit alternating bit protocol by Armin Biere [4].

� a bounded retransmission (communication) protocol, by Klaus Havelund [40].

� the examples of the CMU SMV distribution.

� a model of the Shuttle Digital Autopilot, by Sergey Berezin.

� some models of the PCI Bus protocol, by Sergio Campos.

� a model of production cell, by Kirsten Winter [61].

� a model of a batch reactor, by S.T. Probst [50].

� some model of part of a preliminary version of the system requirements specification of TCAS II (Traffic Alert

and Collision Avoidance System II), by William Chan [1].

These examples can be found in the distribution of NUSMV. Table 3 lists the results of such a comparative test. For

each test, we report the number of (current and next) boolean variables necessary to represent the corresponding model

(“# of BDD vars”), and the memory17 and time required by the systems to analyze the model. We mark as time out

16More information about the ext documentation tool can be found at the url “http://alumnus.caltech.edu/˜sedwards/ext”
17It is the maximum amount of memory allocated during state space generation and search, namely, the amount of memory allocated since the

program starts to the end of the computation before freeing all the memory allocated.
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the failure to the problems in 15000 seconds. For the examples marked with “(*)” a previously computed ordering file

was provided to the system. The verification of the examples marked with a “(+)” required the modification of some

of the parameters of the BDD package. The other symbols between parentheses are command line options passed to

the model checkers: -f enables the computation of the set of reachable states (which is then used to restrict the search

in model checking), while -cp # enables conjunctive partitioning with the threshold of each partition set to #. All

these tests were performed on an Intel Pentium–II 300Mhz processor with 512Mb of RAM under Linux RedHat 5.0.

The results listed in Table 3 show that NUSMV performs in most examples better (in 22 examples of the 39 listed

w.r.t. to speed and in 8 examples w.r.t. to memory occupation) than CMU SMV, especially for larger examples. This

enhancement in performance is mainly due to the use of the state of the art CUDD BDD package. In the tests none of

the enhanced capabilities not present in CMU SMV (e.g., enhanced partitioning methods), were used.

7.2 NUSMV is open: the MBP example

NUSMV has been and is still used as the kernel of MBP, a planner based on model checking able to synthesize

reactive controllers for achieving goals in nondeterministic domains [20, 21].18
MBP has been obtained by substituting

or eliminating some of the NUSMV modules. In particular, the NUSMV parser module has been redone (the two

input languages are different); the NUSMV instantiation module has been eliminated (at the moment, in MBP there is

no concept of hierarchy); the NUSMV semantic check module has been redone; the NUSMV FSM compiler has been

redone to reflect the way in which the MBP input language is compiled into BDDs [17]. All the other modules have been

left unchanged, and are shared between the two systems. Finally, a new module, containing all the special purpose,

planning algorithms, has been added. This module provides routines based on the image and pre-image computation.

7.3 Future Directions

To make the system more usable and improve its efficiency and its expressiveness there are plans to introduce the

following additional functionalities.

� A simulation functionality, which allows the user to acquire confidence with the correctness of the model before

the verification of the properties.

� A sequential input language. The problem with the NUSMV language is that it is most amenable for hardware

and hardware-like systems, while its ability to model software systems is left to the user. This leaves the user

with the burden of a complex model generation activity. In general this can be hardly acceptable, as many

specification languages (e.g., SDL) are intrinsically sequential. A possible new input language for NUSMV is

VERUS [13].

� Forward CTL model checking. In symbolic model checking, CTL formulas are evaluated backward (the base

operation isEX, see Section 2). New algorithms have been developed that allow performing evaluation of CTL

formulas via a forward state traversal [43]. These algorithms allow for the verification of large systems that

cannot be handled by the classical backward algorithms.

� Cone of influence reductions [3]. The idea is to simplify the model w.r.t. the cone of influence of the formula to

be verified, thus reducing the search space.

� Use of “reachability don’t cares” (RDC) [63] to reduce the cost of CTL model checking.

� High density reachability analysis [54] and under and over approximate reachability analysis [48]. These have

shown in some cases, together with RDC, dramatic effects in the performance of CTL model checking.

� Optimizations for constraint-rich models [62], to enable the verification of systems with complex time-invariant

constraints.

Some lines of research that are currently under study and whose results we plan to integrate inside NUSMV are specific

reduction techniques for sequential systems, a set of abstraction techniques that implement certain heuristics developed

in the theorem proving community [38] and that we believe will be very effective, the extension of CTL model

18See [37] for an introduction and a survey of planning as model checking.
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NUSMV CMU SMV

Example file name # of BDD vars Memory (KB) Time (secs) Memory (KB) Time (secs)

abp4.smv 66 4938 9.4 960 10.6

abp4.smv (-f) 66 2818 1.5 960 3.2

abp8.smv 98 5886 81.4 1984 117.3

abp8.smv (-f) 98 15074 114.5 6528 527.7

abp10.smv 114 14275 632.9 11776 1011.4

abp10.smv (-f) 114 66767 2712.2 — time out

abp11.smv 122 43355 3121.2 — time out

abp11.smv (-f) 122 103251 12554.5 — time out

brp.smv 98 23966 178.4 30784 1218.7

brp.smv (-f) 98 5346 3.5 1280 4.4

guidance.smv (*) 190 5090 23.0 1728 21.8

guidance.smv (-f) (*) 190 3926 4.8 1408 4.9

p-queue.smv (*) 86 2318 0.4 1088 0.2

p-queue.smv (-f) (*) 86 2318 0.4 1088 0.1

prod-cons.smv (*) 58 6610 80.9 2880 105.1

prod-cons.smv (-f) (*) 58 5594 11.8 1152 33.0

production-cell.smv (*) 108 5826 72.0 2368 97.0

production-cell.smv (-f) (*) 108 2583 1.8 1088 0.4

base.smv (-f) (*) 148 3223 2.2 1536 1.9

idle.smv (-f) (*) 150 7710 90.1 6144 162.0

counter.smv 6 1334 0.0 896 0.0

dme1.smv (-f) (*) 108 3618 1.3 2368 9.4

dme1-16.smv (-f) (*) 576 25310 277.7 — time out

dme1-16.smv (-cp 2000 -f) (*) 576 15299 335.5 8768 454.4

dme2.smv (-f) (*) 112 3335 1.0 1088 0.6

dme2-16.smv (-f) (*) 586 27050 6313.1 — time out

dme2-16.smv (-f ) (+) (*) 586 49099 1821.9 68864 4985.8

gigamax.smv 88 4142 1.9 1216 2.0

mutex.smv 10 1342 0.0 896 0.0

mutex1.smv 14 1370 0.1 896 0.0

pci3p.smv (-f) (*) 92 1862 0.2 960 0.1

pci4p.smv (-f) (*) 128 5422 20.0 1152 53.0

periodic.smv (-f) 72 1786 1.0 960 0.1

ring.smv (-f) 10 1342 0.0 1152 0.0

robot.smv (-f) (*) 88 2894 8.7 1280 1.5

semaphore.smv (*) 14 1350 0.0 896 0.0

syncarb10.smv 60 3674 1.2 1216 1.0

syncarb5.smv 30 1455 0.1 896 0.0

tcas-t.smv (-cp 10000) (*) 292 98955 779.0 146816 (+) 1588.6 (+)

Table 3: The results of the comparison test.
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checking to multi-agent systems and security applications [2], and the integration of model checking and theorem

proving (SAT in particular) following the ideas reported in [36] and in [5].
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