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1 Introduction

NuSMV is a symbolic model checker originated from the reengineering, reimplementation and
extension of CMU SMV, the original BDD-based model checker developed at CMU [McMil93].
The NuSMV project aims at the development of a state-of-the-art symbolic model checker, de-
signed to be applicable in technology transfer projects: it is a well structured, open, flexible and
documented platform for model checking, and is robust and close to industrial systems standards
[CCGR00].

Version 1 of NuSMV basically implements BDD-based symbolic model checking. Version 2
of NuSMV (NuSMV2 in the following) inherits all the functionalities of the previous version, and
extend them in several directions [CCG+02]. The main novelty in NuSMV2 is the integration of
model checking techniques based on propositional satisfiability (SAT) [BCCZ99]. SAT-based
model checking is currently enjoying a substantial success in several industrial fields, and opens
up new research directions. BDD-based and SAT-based model checking are often able to solve
different classes of problems, and can therefore be seen as complementary techniques.

Starting from NuSMV2, we are also adopting a new development and license model. NuSMV2 is
distributed with an OpenSource license (see http://www.opensource.org), that allows anyone
interested to freely use the tool and to participate in its development. The aim of the NuSMV

OpenSource project is to provide to the model checking community a common platform for the
research, the implementation, and the comparison of new symbolic model checking techniques.
Since the release of NuSMV2, the NuSMV team has received code contributions for different parts
of the system. Several research institutes and commercial companies have express interest in
collaborating to the development of NuSMV.

The main features of NuSMV are the following:

• Functionalities. NuSMV allows for the representation of synchronous and asynchronous finite
state systems, and for the analysis of specifications expressed in Computation Tree Logic
(CTL) and Linear Temporal Logic (LTL), using BDD-based and SAT-based model checking
techniques. Heuristics are available for achieving efficiency and partially controlling the state
explosion. The interaction with the user can be carried on with a textual interface, as well
as in batch mode.

• Architecture. A software architecture has been defined. The different components and
functionalities of NuSMV have been isolated and separated in modules. Interfaces between
modules have been provided. This reduces the effort needed to modify and extend NuSMV.

• Quality of the implementation. NuSMV is written in ANSI C, is POSIX compliant, and
has been debugged with Purify in order to detect memory leaks. Furthermore, the system
code is thoroughly commented. NuSMV uses the state of the art BDD package developed at
Colorado University, and provides a general interface for linking with state-of the-art SAT
solvers. This makes NuSMV very robust, portable, efficient, and easy to understand by other
people than the developers.

This document is structured as follows.

• In Chapter 2 [Tutorial], page 2 we give an introduction to the usage of the main function-
alities of NuSMV.

• In Chapter 3 [Syntax], page 21 we define the syntax of the input language of NuSMV.

• In Chapter 4 [Running NuSMV interactively], page 33 the commands of the interaction
shell are described.

• In Chapter 5 [Running NuSMV batch], page 61 we define the batch mode of NuSMV.

NuSMV is available at http://nusmv.irst.itc.it.
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2 Tutorial

In this chapter we give a short introduction to the usage of the main functionalities of
NuSMV. In Section 2.1 [Examples], page 2 we describe the input language of NuSMV by presenting
some examples of NuSMV models. Section 2.2 [Simulation], page 6 shows how the user can get
familiar with the behavior of a NuSMV model by exploring its possible executions. Section 2.3
[CTL model checking], page 10 and Section 2.4 [LTL model checking], page 13 give an overview
of BDD-based model checking, while Section 2.5 [Bounded Model Checking], page 15 presents
SAT-based model checking in NuSMV.

2.1 Examples

In this section we describe the input language of NuSMV by presenting some examples of
NuSMV models. A complete description of the NuSMV language can be found in Chapter 3 [Syntax],
page 21.

The input language of NuSMV is designed to allow for the description of Finite State Machines
(FSM from now on) which range from completely synchronous to completely asynchronous, and
from the detailed to the abstract. One can specify a system as a synchronous Mealy machine, or
as an asynchronous network of nondeterministic processes. The language provides for modular
hierarchical descriptions, and for the definition of reusable components. Since it is intended to
describe finite state machines, the only data types in the language are finite ones – booleans,
scalars and fixed arrays. Static data types can also be constructed.

The primary purpose of the NuSMV input is to describe the transition relation of the FSM;
this relation describes the valid evolutions of the state of the FSM. In general, any propositional
expression in the propositional calculus can be used to define the transition relation. This
provides a great deal of flexibility, and at the same time a certain danger of inconsistency. For
example, the presence of a logical contradiction can result in a deadlock – a state or states
with no successor. This can make some specifications vacuously true, and makes the description
unimplementable. While the model checking process can be used to check for deadlocks, it is
best to avoid the problem when possible by using a restricted description style. The NuSMV

system supports this by providing a parallel-assignment syntax. The semantics of assignment
in NuSMV is similar to that of single assignment data flow language. By checking programs
for multiple parallel assignments to the same variable, circular assignments, and type errors,
the interpreter insures that a program using only the assignment mechanism is implementable.
Consequently, this fragment of the language can be viewed as a description language, or a
programming language.

Consider the following simple program in the NuSMV language.

MODULE main
VAR

request : boolean;
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & request = 1 : busy;
1 : {ready, busy};

esac;

The space of states of the FSM is determined by the declarations of the state variables (in the
above example request and state). The variable request is declared to be of (predefined) type
boolean. This means that it can assume the (integer) values 0 and 1. The variable state is a
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scalar variable, which can take the symbolic values ready or busy. The following assignment
sets the initial value of the variable state to ready. The initial value of request is completely
unspecified, i.e. it can be either 0 or 1. The transition relation of the FSM is expressed by
defining the value of variables in the next state (i.e. after each transition), given the value of
variables in the current states (i.e. before the transition). The case segment sets the next value
of the variable state to the value busy (after the column) if its current value is ready and
request is 1 (i.e. true). Otherwise (the 1 before the column) the next value for state can be
any in the set {ready,busy}. The variable request is not assigned. This means that there are
no constraints on its values, and thus it can assume any value. request is thus an unconstrained
input to the system.

The following program illustrates the definition of reusable modules and expressions. It is
a model of a three bit binary counter circuit. The order of module definitions in the input file
is not relevant.

MODULE counter_cell(carry_in)
VAR

value : boolean;
ASSIGN

init(value) := 0;
next(value) := (value + carry_in) mod 2;

DEFINE
carry_out := value & carry_in;

MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);

The FSM is defined by instantiating three times the module type counter_cell in the module
main, with the names bit0, bit1 and bit2 respectively. The counter_cell module has one
formal parameter carry_in. In the instance bit0, this parameter is given the actual value
1. In the instance bit1, carry_in is given the value of the expression bit0.carry_out. This
expression is evaluated in the context of the main module. However, an expression of the form
‘a.b’ denotes component ‘b’ of module ‘a’, just as if the module ‘a’ were a data structure in
a standard programming language. Hence, the carry_in of module bit1 is the carry_out of
module bit0.

The keyword ‘DEFINE’ is used to assign the expression value & carry_in to the symbol
carry_out. A definition can be thought of as a variable with value (functionally) depending
on the current values of other variables. The same effect could have been obtained as follows
(notice that the current value of the variable is assigned, rather than the next value.):

VAR
carry_out : boolean;

ASSIGN
carry_out := value & carry_in;

Defined symbols do not require introducing a new variable, and hence do not increase the state
space of the FSM. On the other hand, it is not possible to assign to a defined symbol a value
non-deterministically. Another difference between defined symbols and variables is that while
the type of variables is declared a priori, for definitions this is not the case.

The previous examples describe synchronous systems, where the assignments statements
are taken into account in parallel and simultaneously. NuSMV allows to model asynchronous
systems. It is possible to define a collection of parallel processes, whose actions are interleaved,
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following an asynchronous model of concurrency. This is useful for describing communication
protocols, or asynchronous circuits, or other systems whose actions are not synchronized (in-
cluding synchronous circuits with more than one clock region).

The following program represents a ring of three asynchronous inverting gates.

MODULE inverter(input)
VAR

output : boolean;
ASSIGN

init(output) := 0;
next(output) := !input;

MODULE main
VAR

gate1 : process inverter(gate3.output);
gate2 : process inverter(gate1.output);
gate3 : process inverter(gate2.output);

Among all the modules instantiated with the process keyword, one is nondeterministically
chosen, and the assignment statements declared in that process are executed in parallel. It is
implicit that if a given variable is not assigned by the process, then its value remains unchanged.
Because the choice of the next process to execute is non-deterministic, this program models the
ring of inverters independently of the speed of the gates.

We remark that the system is not forced to eventually choose a given process to execute.
As a consequence the output of a given gate may remain constant, regardless of its input. In
order to force a given process to execute infinitely often, we can use a fairness constraint. A
fairness constraint restricts the attention of the model checker to only those execution paths
along which a given formula is true infinitely often. Each process has a special variable called
running which is 1 if and only if that process is currently executing.

By adding the declaration:

FAIRNESS
running

to the module inverter, we can effectively force every instance of inverter to execute infinitely
often.

An alternative to using processes to model an asynchronous circuit is to allow all gates to
execute simultaneously, but to allow each gate to choose non-deterministically to re-evaluate its
output or to keep the same output value. Such a model of the inverter ring would look like the
following:

MODULE main
VAR

gate1 : inverter(gate3.output);
gate2 : inverter(gate2.output);
gate3 : inverter(gate1.output);

SPEC
(AG AF gate1.out) & (AG AF !gate1.out)

MODULE inverter(input)
VAR

output : boolean;
ASSIGN
init(output) := 0;
next(output) := !input union output;
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The union operator (set union) coerces its arguments to singleton sets as necessary. Thus, the
next output of each gate can be either its current output, or the negation of its current input
– each gate can choose non-deterministically whether to delay or not. As a result, the number
of possible transitions from a given state can be as 2n , where n is the number of gates. This
sometimes (but not always) makes it more expensive to represent the transition relation.

The following program is another example of asynchronous model. It uses a variable
semaphore to implement mutual exclusion between two asynchronous processes. Each process
has four states: idle, entering, critical and exiting. The entering state indicates that the
process wants to enter its critical region. If the variable semaphore is 0, it goes to the critical
state, and sets semaphore to 1. On exiting its critical region, the process sets semaphore to 0

again.

MODULE main
VAR

semaphore : boolean;
proc1 : process user(semaphore);
proc2 : process user(semaphore);

ASSIGN
init(semaphore) := 0;

MODULE user(semaphore)
VAR

state : {idle, entering, critical, exiting};
ASSIGN

init(state) := idle;
next(state) :=
case

state = idle : {idle, entering};
state = entering & !semaphore : critical;
state = critical : {critical, exiting};
state = exiting : idle;
1 : state;

esac;
next(semaphore) :=
case

state = entering : 1;
state = exiting : 0;
1 : semaphore;

esac;
FAIRNESS

running

NuSMV allows to specify the FSM directly in terms of propositional formulas. The set of
possible initial states is specified as a formula in the current state variables. A state is initial if
it satisfies the formula. The transition relation is directly specified as a propositional formula
in terms of the current and next values of the state variables. Any current state/next state pair
is in the transition relation if and only if it satisfies the formula.

These two functions are accomplished by the ‘INIT’ and ‘TRANS’ keywords. As an example,
here is a description of the three inverter ring using only TRANS and INIT:

MODULE main
VAR

gate1 : inverter(gate3.output);
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gate2 : inverter(gate1.output);
gate3 : inverter(gate2.output);

MODULE inverter(input)
VAR

output : boolean;
INIT

output = 0
TRANS

next(output) = !input | next(output) = output

According to the TRANS declaration, for each inverter, the next value of the output is equal
either to the negation of the input, or to the current value of the output. Thus, in effect, each
gate can choose non-deterministically whether or not to delay.

Using TRANS and INIT it is possible to specify inadmissible FSMs, where the set of initial
states is empty or the transition relation is not total. This may result in logical absurdities.

2.2 Simulation

Simulation offers to the user the possibility of exploring the possible executions (traces from
now on) of a NuSMV model. In this way, the user can get familiar with a model and can acquire
confidence with its correctness before the actual verification of properties. This section describes
the basic features of simulation in NuSMV. Further details on the simulation commands can be
found in Section 4.4 [Simulation Commands], page 48.

In order to achieve maximum flexibility and degrees of freedom in a simulation session,
NuSMV permits three different trace generation strategies: deterministic, random and interactive.
Each of them corresponds to a different way a state is picked from a set of possible choices. In
deterministic simulation mode the first state of a set (whatever it is) is chosen, while in the
random one the choice is performed nondeterministically. In these two first modes traces are
automatically generated by NuSMV: the user obtains the whole of the trace in a time without
control over the generation itself (except for the simulation mode and the number of states
entered via command line).

In the third simulation mode, the user has a complete control over traces generation by
interactively building the trace. During an interactive simulation session, the system stops at
every step, showing a list of possible future states: the user is requested to choose one of the
items. This feature is particularly useful when one wants to inspect some particular reactions of
the model to be checked. When the number of possible future states exceeds an internal limit,
rather than "confusing" the user with a choice from a high number of possible evolutions, the
system asks the user to "guide" the simulation via the insertion of some further constraints over
the possible future states. The system will continue to ask for constraints insertion until the
number of future states will be under the predefined threshold. The constraints entered during
this phase are accumulated (in a logical product) in a single big constraint. This constraint is
used only for the current step of the simulation and is discarded before the next step. The system
checks the expressions entered by the user and does not accept them whenever an inconsistency
arises. Cases of inconsistency (i.e. empty set of states) may be caused by:

• the entered expressions (i.e. a & ~a);

• the result of the entered expressions conjoined with previous accumulated ones;

• the result of accumulated constraints conjoined with the set of possible future states.

A typical execution sequence of a simulation session could be as follows. Suppose to use
the model described below.
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MODULE main
VAR

request : boolean;
state : {ready,busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & request : busy;
1 : {ready,busy};

esac;

As a preliminary step, this model has to read into the NuSMV system. This can be obtained by
executing the following commands (we assume that the model is saved in file short.smv):1

system_prompt> NuSMV -int short.smv

NuSMV > go

NuSMV >

In order to start the simulation, an initial state has to be chosen. This can be done in three
ways:

• by default, the simulator uses the current state as a starting point of every new simulation;
this behavior if possible only if a current state is defined (e.g., if we are exploring a trace,
as described in Section 4.5 [Traces Inspection Commands], page 50);

• if command goto_state is used, the user can select any state of an already existent trace
as the current state (see see Section 4.5 [Traces Inspection Commands], page 50);

• if pick_state is used, then the user can choose the starting state of the simulation among
the initial states of the model; this command has to be used when a current state does not
exist yet (that is when the system has being reset).

At this point of the example current state does not exist, and there is no trace currently
stored in the system. Therefore, an item from the set of initial states has to be picked using
command pick_state. A simulation session can be started now, using the simulate command.
Consider for instance the following simulation session:

system_prompt> NuSMV -int short.smv

NuSMV > go

NuSMV > pick state -r

NuSMV > print current state -v

Current state is 1.1
request = 0
state = ready
NuSMV > simulate -r 3

********* Starting Simulation From State 1.1 *********
NuSMV > show traces -t

There is 1 trace currently available.
NuSMV > show traces -v

#################### Trace number: 1 ####################
-> State 1.1 <-

request = 0
state = ready

-> State 1.2 <-
request = 1

1 We assume that every NuSMV command is followed by a 〈RET〉 keystroke. In the following examples, NuSMV
commands are written in a bold face to distinguish them from system output messages.
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state = busy
-> State 1.3 <-

request = 1
state = ready

-> State 1.4 <-
request = 1
state = busy

Command pick state -r requires to pick the starting state of the simulation randomly from
the set of initial states of the model. Command simulate -r 3 asks to build a three-steps
simulation by picking randomly the next states of the steps. As shown by command show traces

-v, the resulting trace contains 4 states (the initial one, and the three ones that have been added
by the random simulation). We remark that the generated traces are numbered: every trace
is identified by an integer number, while every state belonging to a trace is identified by a dot
notation: for example state 1.3 is the third state of the first generated trace.

Now the user can start a new simulation by choosing a new starting state. In the next
example, for instance, the user extends trace 1 by first choosing state 1.4 as the current state
and by then running a random simulation of length 3.

NuSMV > goto state 1.4

The starting state for new trace is:
-> State 2.4 <-

request = 1
state = busy

NuSMV > simulate -r 3

******** Simulation Starting From State 2.4 ********
NuSMV > show traces 2

################### Trace number: 2 ###################
-> State 2.1 <-

request = 1
state = ready

-> State 2.2 <-
state = busy

-> State 2.3 <-
request = 0

-> State 2.4 <-
request = 1

-> State 2.5 <-
request = 0

-> State 2.6 <-
state = ready

-> State 2.7 <-
NuSMV >

As the reader can see from the previous example, the new trace is stored as trace 2.

The user is also able to interactively choose the states of the trace he wants to build: an
example of an interactive simulation is shown below:

NuSMV > pick state -i

*************** AVAILABLE FUTURE STATES *************

0) -------------------------
request = 1
state = ready
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1) -------------------------
request = 0

Choose a state from the above (0-1): 1 〈RET〉

Chosen state is: 1

NuSMV > simulate -i 1

******** Simulation Starting From State 3.1 ********
*************** AVAILABLE FUTURE STATES *************

0) -------------------------
request = 1
state = ready

1) -------------------------
state = busy

2) -------------------------
request = 0
state = ready

3) -------------------------
state = busy

Choose a state from the above (0-3): 0 〈RET〉

Chosen state is:
request = 1
state = ready

NuSMV > show traces 3

################### Trace number: 3 ###################
-> State 3.1 <-

request = 0
state = ready

-> State 3.2 <-
request = 1

The user can also specify some constraints to restrict the set of states from which the
simulator will pick out. Constraints can be set for both the pick_state command and the
simulate command using option -c. For example the following command picks an initial state
by defining a simple constraint:

NuSMV > pick state -c "request = 1" -i

*************** AVAILABLE FUTURE STATES ***************

0) -------------------------
request = 1
state = ready

There’s only one future state. Press Return to Proceed. 〈RET〉

Chosen state is: 0
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NuSMV > quit

system_prompt>

Note how the set of possible states to choose has being restricted (in this case there is only one
future state, so the system will automatically pick it, waiting for the user to press the 〈RET〉

key).

We remark that, in the case of command simulate, the constraints defined using option -c

are "global" for the actual trace to be generated, in the sense that they are always included in
every step of the simulation. They are hence complementary to the constraints entered with the
pick_state command, or during an interactive simulation session when the number of future
states to be displayed is too high, since these are "local" only to a single simulation step and
are "forgotten" in the next one.

2.3 CTL model checking

The main purpose of a model checker is to verify that a model satisfies a set of desired
properties specified by the user. In NuSMV, the specifications to be checked can be expressed
in two different temporal logics: the Computation Tree Logic CTL, and the Linear Temporal
Logic LTL extended with Past Operators. CTL and LTL specifications are evaluated by NuSMV

in order to determine their truth or falsity in the FSM. When a specification is discovered to be
false, NuSMV constructs and prints a counterexample, i.e. a trace of the FSM that falsifies the
property. In this section we will describe model checking of specifications expressed in CTL,
while the next section we consider the case of LTL specifications.

CTL is a branching-time logics: its formulas allow for specifying properties that take into
account the non-deterministic, branching evolution of a FSM. More precisely, the evolution of a
FSM from a given state can be described as an infinite tree, where the nodes are the states of
the FSM and the branching in due to the non-determinism in the transition relation. The paths
in the tree that start in a given state are the possible alternative evolutions of the FSM from
that state. In CTL one can express properties that should hold for all the paths that start in a
state, as well as for properties that should hold just for some of the paths.

Consider for instance CTL formula AF p. It expresses the condition that, for all the paths
(A) stating from a state, eventually in the future (F) condition p must hold. That is, all the
possible evolutions of the system will eventually reach a state satisfying condition p. CTL
formula EF p, on the other hand, requires than there exists some path (E) that eventually in the
future satisfies p.

Similarly, formula AG p requires that condition p is always, or globally, true in all the states of
all the possible paths, while formula EG p requires that there is some path along which condition
p is continuously true.

Other CTL operators are:

• A [p U q] and E [p U q], requiring condition p to be true until a state is reached that
satisfies condition q;

• AX p and EX p, requiring that condition p is true in all or in some of the next states reachable
from the current state.

CTL operators can be nested in an arbitrary way and can be combined using logic operators
(!, &, |, ->, <->...). Typical examples of CTL formulas are AG ! p ("condition p is absent in all
the evolutions"), AG EF p ("it is always possible to reach a state where p holds"), and AG (p ->

AF q) ("each occurrence of condition p is followed by an occurrence of condition q").
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In NuSMV a CTL specification is given as CTL formula introduced by the keyword ‘SPEC’
(see Section 3.3.1 [CTL Specifications], page 30). Whenever a CTL specification is processed,
NuSMV checks whether the CTL formula is true in all the initial states of the model. If this is not
a case, then NuSMV generates a counter-example, that is, a (finite or infinite) trace that exhibits
a valid behavior of the model that does not satisfy the specification. Traces are very useful for
identifying the error in the specification that leads to the wrong behavior. We remark that the
generation of a counter-example trace is not always possible for CTL specifications. Temporal
operators corresponding to existential path quantifiers cannot be proved false by a showing of a
single execution path. Similarly, sub-formulas preceded by universal path quantifier cannot be
proved true by a showing of a single execution path.

Consider the case of the semaphore program described in Section 2.1 [Examples], page 2.
A desired property for this program is that it should never be the case that the two processes
proc1 and proc2 are at the same time in the critical state (this is an example of a "safety"
property). This property can be expressed by the following CTL formula:

AG ! (proc1.state = critical & proc2.state = critical)

Another desired property is that, if proc1 wants to enter its critical state, it eventually does
(this is an example of a "liveness" property). This property can be expressed by the following
CTL formula:

AG (proc1.state = entering -> AF proc1.state = critical)

In order to verify the two formulas on the semaphore model, we add the two corresponding CTL
specification to the program, as follows:

MODULE main
VAR

semaphore : boolean;
proc1 : process user(semaphore);
proc2 : process user(semaphore);

ASSIGN
init(semaphore) := 0;

SPEC AG ! (proc1.state = critical & proc2.state = critical)
SPEC AG (proc1.state = entering -> AF proc1.state = critical)

MODULE user(semaphore)
VAR

state : {idle, entering, critical, exiting};
ASSIGN

init(state) := idle;
next(state) :=
case

state = idle : {idle, entering};
state = entering & !semaphore : critical;
state = critical : {critical, exiting};
state = exiting : idle;
1 : state;

esac;
next(semaphore) :=
case

state = entering : 1;
state = exiting : 0;
1 : semaphore;

esac;
FAIRNESS
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running

By running NuSMV with the command

system_prompt> NuSMV semaphore.smv

we obtain the following output:

-- specification AG (!(proc1.state = critical & proc2.state = critical))
-- is true

-- specification AG (proc1.state = entering -> AF proc1.state = critical)
-- is false
-- as demonstrated by the following execution sequence

-> State 1.1 <-
semaphore = 0
proc1.state = idle
proc2.state = idle
[executing process proc2]

-> State 1.2 <-
[executing process proc1]

-- loop starts here --
-> State 1.3 <-

proc1.state = entering
[executing process proc2]

-> State 1.4 <-
proc2.state = entering
[executing process proc2]

-> State 1.5 <-
semaphore = 1
proc2.state = critical
[executing process proc1]

-> State 1.6 <-
[executing process proc2]

-> State 1.7 <-
proc2.state = exiting
[executing process proc2]

-> State 1.8 <-
semaphore = 0
proc2.state = idle
[executing process proc2]

NuSMV tells us that the first CTL specification is true: it is never the case that the two processes
will be at the same time in the critical region. On the other hand, the second specification
is false. NuSMV produces a counter-example path where initially proc1 goes to state entering

(state 1.3), and then a loop starts in which proc2 repeatedly enters its critical region (state 1.5)
and then returns to its idle state (state 1.8); in the loop, proc1 is activated only when proc2 is
in the critical region, and is therefore not able to enter its critical region (state 1.6). This path
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not only shows that the specification is false, it also points out why can it happen that proc1

never enters its critical region.

Note that in the printout of a cyclic, infinite counter-example the starting point of the loop
is marked by -- loop starts here --. Moreover, in order to make it easier to follow the action
in systems with a large number of variables, only the values of variables that have changed in
the last step are printed in the states of the trace.

2.4 LTL model checking

NuSMV allows for specifications expressed in LTL. Intuitively, while CTL specifications ex-
press properties over the computation tree of the FSM (branching-time approach), LTL char-
acterizes each linear path induced by the FSM (linear-time approach). The two logics have in
general different expressive power, but also share a significant intersection that includes most of
the common properties used in practice. Typical LTL operators are:

• F p (read "in the future p"), stating that a certain condition p holds in one of the future
time instants;

• G p (read "globally p"), stating that a certain condition p holds in all future time instants;

• p U q (read "p until q"), stating that condition p holds until a state is reached where
condition q holds;

• X p (read "next p"), stating that condition p is true in the next state.

We remark that, differently from CTL, LTL temporal operators do not have path quantifiers.
In fact, LTL formulas are evaluated on linear paths, and a formula is considered true in a given
state if it is true for all the paths starting in that state.

Consider the case of the semaphore program and of the safety and liveness properties already
described in Section 2.3 [CTL model checking], page 10. These properties correspond to LTL
formulas

G ! (proc1.state = critical & proc2.state = critical)

expressing that the two processes cannot be in the critical region at the same time, and

G (proc1.state = entering -> F proc1.state = critical)

expressing that whenever a process wants to enter its critical session, it eventually does.

If we add the two corresponding LTL specification to the program, as follows:2

MODULE main
VAR

semaphore : boolean;
proc1 : process user(semaphore);
proc2 : process user(semaphore);

ASSIGN
init(semaphore) := 0;

LTLSPEC G ! (proc1.state = critical & proc2.state = critical)
LTLSPEC G (proc1.state = entering -> F proc1.state = critical)

MODULE user(semaphore)
VAR

state : {idle, entering, critical, exiting};
ASSIGN

2 In NuSMV a LTL specification are introduced by the keyword ‘LTLSPEC’ (see Section 3.3.2 [LTL Specifications],
page 30).
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init(state) := idle;
next(state) :=
case

state = idle : {idle, entering};
state = entering & !semaphore : critical;
state = critical : {critical, exiting};
state = exiting : idle;
1 : state;

esac;
next(semaphore) :=
case

state = entering : 1;
state = exiting : 0;
1 : semaphore;

esac;
FAIRNESS

running

NuSMV produces the following output:

-- specification G (!(proc1.state = critical & proc2.state = critical))
-- is true
-- specification G (proc1.state = entering -> F proc1.state = critical)
-- is false
-- as demonstrated by the following execution sequence
-> State 1.1 <-

semaphore = 0
proc1.state = idle
proc2.state = idle
[executing process proc2]

-> State 1.2 <-
[...]

That is, the first specification is true, while the second is false and a counter-example path is
generated.

In NuSMV, LTL properties can also include past temporal operators. Differently from stan-
dard temporal operators, that allow to express properties over the future evolution of the FSM,
past temporal operators allow to characterize properties of the path that lead to the current
situation. The typical past operators are:

• O p (read "once p"), stating that a certain condition p holds in one of the past time instants;

• H p (read "historically p"), stating that a certain condition p holds in all previous time
instants;

• p S q (read "p since q"), stating that condition p holds since a previous state where condition
q holds;

• Y p (read "yesterday p"), stating that condition p holds in the previous time instant.

Past temporal operators can be combined with future temporal operators, and allow for the
compact characterization of complex properties.

A detailed description of the syntax of LTL formulas can be found in Section 3.3.2 [LTL
Specifications], page 30.
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2.5 Bounded Model Checking

In this section we give a short introduction to the use of Bounded Model Checking (BMC)
in NuSMV. Further details on BMC can be found in Section 4.3 [Commands for Bounded Model
Checking], page 41. For a more in-depth introduction to the theory underlying BMC please
refer to [BCCZ99].

Consider the following model, representing a simple, deterministic counter modulo 8 (we
assume that the following specification is contained in file modulo8.smv):

MODULE main
VAR

y : 0..15;

ASSIGN
init(y) := 0;

TRANS
case

y = 7 : next(y) = 0;
1 : next(y) = ((y + 1) mod 16);

esac

This slightly artificial model has only the state variable y, ranging from 0 to 15. The values
of y are limited by the transition relation to the [0, 7] interval. The counter starts from 0,
deterministically increments by one the value of y at each transition up to 7, and then restarts
from zero.

We would like to check with BMC the LTL specification G ( y=4 -> X y=6 ) expressing
that "each time the counter value is 4, the next counter value will be 6". This specification
is obviously false, and our first step is to use NuSMV BMC to demonstrate its falsity. To this
purpose, we add the following specification to file modulo8.smv:

LTLSPEC G ( y=4 -> X y=6 )

and we instruct NuSMV to run in BMC by using command-line option -bmc:

system_prompt> NuSMV -bmc modulo8.smv

-- no counterexample found with bound 0 for specification
G(y = 4 -> X y = 6)

-- no counterexample found with bound 1 for ...
-- no counterexample found with bound 2 for ...
-- no counterexample found with bound 3 for ...
-- no counterexample found with bound 4 for ...
-- specification G (y = 4 -> X y = 6) is false
-- as demonstrated by the following execution sequence
State 1.1: y = 0
State 1.2: y = 1
State 1.3: y = 2
State 1.4: y = 3
State 1.5: y = 4
State 1.6: y = 5
system_prompt>

NuSMV has found that the specification is false, and is showing us a counterexample, i.e. a trace
where the value of y becomes 4 (at time 4) and at the next step is not 6.
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bound: 0 1 2 3 4 5
o--->o--->o--->o--->o--->o

state: y=0 y=1 y=2 y=3 y=4 y=5

The output produced by NuSMV shows that, before the counterexample of length 5 if found,
NuSMV also tried to finds counterexamples of lengths 0 to 4. However, there are no such coun-
terexamples. For instance, in the case of bound 4, the traces of the model have the following
form:

bound: 0 1 2 3 4
o--->o--->o--->o--->o

state: y=0 y=1 y=2 y=3 y=4

In this situation, y gets the value 4, but it is impossible for NuSMV to say anything about the
following state.

In general, in BMC mode NuSMV tries to find a counterexample of increasing length, and
immediately stops when it succeeds, declaring that the formula is false. The maximum number
of iterations can be controlled by using command-line option -bmc_length. The default value
is 10. If the maximum number of iterations is reached and no counter-example is found, then
NuSMV exits, and the truth of the formula is not decided. We remark that in this case we cannot
conclude that the formula is true, but only that any counter-example should be longer than the
maximum length.

system_prompt> NuSMV -bmc -bmc length 4 modulo8.smv

-- no counterexample found with bound 0 for ...
-- no counterexample found with bound 1 for ...
-- no counterexample found with bound 2 for ...
-- no counterexample found with bound 3 for ...
-- no counterexample found with bound 4 for ...
system_prompt>

Let us consider now another property, !G F (y = 2), stating that y gets the value 2 only a
finite number of times. Again, this is a false property due to the cyclic nature of the model. Let
us modify the specification of file model8.smv as follows:

LTLSPEC !G F (y = 2)

and let us run NuSMV in BMC mode:

system_prompt> NuSMV -bmc modulo8.smv

-- no counterexample found with bound 0 for specification ! G F y = 2
-- no counterexample found with bound 1 for ...
-- no counterexample found with bound 2 for ...
-- no counterexample found with bound 3 for ...
-- no counterexample found with bound 4 for ...
-- no counterexample found with bound 5 for ...
-- no counterexample found with bound 6 for ...
-- no counterexample found with bound 7 for ...
-- specification ! G F y = 2 is false
-- as demonstrated by the following execution sequence
-- loop starts here --
State 2.1: y = 0
State 2.2: y = 1
State 2.3: y = 2
State 2.4: y = 3
State 2.5: y = 4
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State 2.6: y = 5
State 2.7: y = 6
State 2.8: y = 7
State 2.9: y = 0
system_prompt>

In this example NuSMV has increased the problem bound until a cyclic behavior of length 8 is
found that contains a state where y value is 2. Since the behavior is cyclic, state 2.3 is entered
infinitely often and the property is false.

=
---------------------------------------

| |
| |
| |
o--->o--->o--->o--->o--->o--->o--->o--->o

bound: 0 1 2 3 4 5 6 7 8
y value: 0 1 2 3 4 5 6 7 0

In general, BMC can find two kinds of counterexamples, depending on the property being
analyzed. For safety properties (e.g. like the first one used in this tutorial), a counterexample is
a finite sequence of transitions through different states. For liveness properties, counterexamples
are infinite but periodic sequences, and can be represented in a bounded setting as a finite prefix
followed by a loop, i.e. a finite sequence of states ending with a loop back to some previous
state. So a counterexample which demonstrates the falsity of a liveness property as "! G F
p" cannot be a finite sequence of transitions. It must contain a loop which makes the infinite
sequence of transitions as well as we expected.

=
---------------------

| |
| |
| |

o--->o-...->o--->o--->o-...->o--->o--->o--->o--->
time: 0 1 l-1 l l+1 k-2 k-1 k k+1 ...

Consider the above figure. It represents an examples of a generic infinite counterexample, with
its two parts: the prefix part (times from 0 to l-1), and the loop part (indefinitely from l to
k-1). Because the loop always jumps to a previous time it is called ’loopback’. The loopback
condition requires that state k is identical to state l. As a consequence, state k+1 is forced to
be equal to state l+1, state k+2 to be equal to state l+2, and so on.

A fine-grained control of the length and of the loopback condition for the counter-example
can be specified by using command check_ltlspec_bmc_onepb in interactive mode (see Sec-
tion 4.3 [Commands for Bounded Model Checking], page 41). This command accepts options
-k, that specifies the length of the counter-example we are looking for, and -l, that defines the
loopback condition. Consider the following interactive session:

system_prompt> NuSMV -int modulo8.smv

NuSMV > go bmc

NuSMV > check ltlspec bmc onepb -k 9 -l 0

-- no counterexample found with bound 9 and loop at 0 for specification
! G F y = 2

NuSMV > check ltlspec bmc onepb -k 8 -l 1

-- no counterexample found with bound 8 and loop at 1 for specification
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! G F y = 2
NuSMV > check ltlspec bmc onepb -k 9 -l 1

-- specification ! G F y = 2 is false
-- as demonstrated by the following execution sequence
State 1.1: y = 0
-- loop starts here --
State 1.2: y = 1
State 1.3: y = 2
State 1.4: y = 3
State 1.5: y = 4
State 1.6: y = 5
State 1.7: y = 6
State 1.8: y = 7
State 1.9: y = 0
State 1.10: y = 1
NuSMV > quit

system_prompt>

NuSMV did not find a counterexample for cases (k=9, l=0) and (k=8, l=1). The following figures
show that these case look for counterexamples that do not match with the model of the counter,
so it is not possible for NuSMV to satisfy them.

k = 9, l = 0:
=

--------------------------------------------
| |
| |
| |
o--->o--->o--->o--->o--->o--->o--->o--->o--->o

bound: 0 1 2 3 4 5 6 7 8 9
y value: 0 1 2 3 4 5 6 7 0 1

k = 8, l = 1:
=

----------------------------------
| |
| |
| |

o--->o--->o--->o--->o--->o--->o--->o--->o
bound: 0 1 2 3 4 5 6 7 8
y value: 0 1 2 3 4 5 6 7 0

Case (k=9, l=1), instead allows for a counter-example:

k = 9, l = 1:
=

---------------------------------------
| |
| |
| |

o--->o--->o--->o--->o--->o--->o--->o--->o--->o
bound: 0 1 2 3 4 5 6 7 8 9
y value: 0 1 2 3 4 5 6 7 0 1
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In NuSMV it is possible to specify the loopback condition in four different ways:

• The loop as a precise time-point. Use a natural number as the argument of option -l.

• The loop length. Use a negative number as the argument of option -l. The negative number
is the loop length, and you can also imagine it as a precise time-point loop relative to the
path bound.

• No loopback. Use symbol ’X’ as the argument of option -l. In this case NuSMV will not find
infinite counterexamples.

• All possible loops. Use symbol ’*’ as the argument of option -l. In this case NuSMV will
search counterexamples for paths with any possible loopback structure. A counterexample
with no loop will be also searched. This is the default value for option -l.

In the following example we look for a counter-example of length 12 with a loop of length 8:

system_prompt> NuSMV -int modulo8.smv

NuSMV > go bmc

NuSMV > check ltlspec bmc onepb -k 12 -l -7

-- specification ! G F y = 2 is false
-- as demonstrated by the following execution sequence
State 1.1: y = 0
State 1.2: y = 1
State 1.3: y = 2
State 1.4: y = 3
-- loop starts here --
State 1.5: y = 4
State 1.6: y = 5
State 1.7: y = 6
State 1.8: y = 7
State 1.9: y = 0
State 1.10: y = 1
State 1.11: y = 2
State 1.12: y = 3
State 1.13: y = 4
NuSMV >

This picture illustrates the produced counterexample in a more effective way:

=
---------------------------------------
| |
| |
| |

o--->o--->o--->o--->o--->o--->o--->o--->o--->o--->o--->o--->o
bound: 0 1 2 3 4 5 6 7 8 9 10 11 12
y value: 0 1 2 3 4 5 6 7 0 1 2 3 4

If no loopback is specified, NuSMV is not able to find a counterexample for the given liveness
property:

system_prompt> NuSMV -int modulo8.smv

NuSMV > go bmc

NuSMV > check ltlspec bmc onepb -k 12 -l X

-- no counterexample found with bound 12 and no loop for ...
NuSMV >
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Bounded Model Checking in NuSMV can be used not only for checking LTL specification,
but also for checking invariants. An invariant is a propositional property which must always
hold. BMC tries to prove the truth of invariants via an inductive reasoning, by checking if (i)
the property holds in every initial state, and (ii) if it holds in any state reachable from any state
where it holds.

Let us modify file modulo8.smv by replacing the LTL specification with the following in-
variant specification:

INVARSPEC y in (0..12)

and let us run NuSMV in BMC mode:

system_prompt> NuSMV -bmc modelo8.smv

-- cannot prove the invariant y in (0 .. 12) : the induction fails
-- as demonstrated by the following execution sequence
State 1.1: y = 12
State 1.2: y = 13
system_prompt>

NuSMV reports that the given invariant cannot be proved, and it shows a state satisfying "y
in (0..12)" that has a successor state not satisfying "y in (0..12)". This two-steps sequence of
assignments shows why the induction fails. Note that NuSMV does not say the given formula is
really false, but only that it cannot be proven to be true using the inductive reasoning described
previously.

If we try to prove the stronger invariant y in (0..7) we obtain:

system_prompt> NuSMV -bmc modelo8.smv

-- invariant y in (0 .. 7) is true
system_prompt>

In this case NuSMV is able to prove that y in (0..7) is true. As a consequence, also the weaker
invariant y in (0..12) is true, even if NuSMV is not able to prove it in BMC mode. On the other
hand, the returned counter-example can be used to strengthen the invariant, until NuSMV is able
to prove it.

Now we check the false invariant y in (0..6):

-- cannot prove the invariant y in (0 .. 6) : the induction fails
-- as demonstrated by the following execution sequence
State 1.1: y = 6
State 1.2: y = 7
NuSMV >

As for property y in (0..12), NuSMV returns a two steps sequence showing that the induction
fails. The difference is that, in the former case state ’y=12’ is NOT reachable, while in the latter
case the state ’y=6’ can be reached. Unfortunately enough, the BMC-based invariant checker is
not able to distinguish these two cases.
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3 Syntax

We present now the complete syntax of the input language of NuSMV. In the following, an
atom may be any sequence of characters starting with a character in the set {A-Za-z_} and
followed by a possibly empty sequence of characters belonging to the set {A-Za-z0-9_\$#-}. A
number is any sequence of digits. A digit belongs to the set {0-9}.

All characters and case in a name are significant. Whitespace characters are space (〈SPACE〉),
tab (〈TAB〉) and newline (〈RET〉). Any string starting with two dashes (‘--’) and ending with a
newline is a comment. Any other tokens recognized by the parser are enclosed in quotes in the
syntax expressions below. Grammar productions enclosed in square brackets (‘[]’) are optional.

3.1 Expressions

Expressions are constructed from variables, constants, and a collection of operators, includ-
ing boolean connectives, integer arithmetic operators, case expressions and set expressions.

3.1.1 Simple Expressions

Simple expressions are expressions built only from current state variables. Simple expres-
sions can be used to specify sets of states, e.g. the initial set of states. The syntax of simple
expressions is as follows:

simple_expr ::
atom ;; a symbolic constant

| number ;; a numeric constant
| "TRUE" ;; The boolean constant 1
| "FALSE" ;; The boolean constant 0
| var_id ;; a variable identifier
| "(" simple_expr ")"
| "!" simple_expr ;; logical not
| simple_expr "&" simple_expr ;; logical and
| simple_expr "|" simple_expr ;; logical or
| simple_expr "xor" simple_expr ;; logical exclusive or
| simple_expr "->" simple_expr ;; logical implication
| simple_expr "<->" simple_expr ;; logical equivalence
| simple_expr "=" simple_expr ;; equality
| simple_expr "!=" simple_expr ;; inequality
| simple_expr "<" simple_expr ;; less than
| simple_expr ">" simple_expr ;; greater than
| simple_expr "<=" simple_expr ;; less than or equal
| simple_expr ">=" simple_expr ;; greater than or equal
| simple_expr "+" simple_expr ;; integer addition
| simple_expr "-" simple_expr ;; integer subtraction
| simple_expr "*" simple_expr ;; integer multiplication
| simple_expr "/" simple_expr ;; integer division
| simple_expr "mod" simple_expr ;; integer remainder
| set_simple_expr ;; a set simple_expression
| case_simple_expr ;; a case expression

A var id, (see Section 3.2.10 [Identifiers], page 27) or identifier, is a symbol or expression
which identifies an object, such as a variable or a defined symbol. Since a var_id can be an
atom, there is a possible ambiguity if a variable or defined symbol has the same name as a
symbolic constant. Such an ambiguity is flagged by the interpreter as an error.

The order of parsing precedence for operators from high to low is:
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*,/
+,-
mod
=,!=,<,>,<=,>=
!
&
|,xor
<->
->

Operators of equal precedence associate to the left, except -> that associates to the right.
Parentheses may be used to group expressions.

3.1.1.1 Case Expressions

A case expression has the following syntax:

case_simple_expr ::
"case"

simple_expr ":" simple_expr ";"
simple_expr ":" simple_expr ";"
...
simple_expr ":" simple_expr ";"

"esac"

A case_simple_expr returns the value of the first expression on the right hand side of ‘:’,
such that the corresponding condition on the left hand side evaluates to 1. Thus, if simple_expr
on the left side is true, then the result is the corresponding simple_expr on the right side. If
none of the expressions on the left hand side evaluates to 1, the result of the case_expression

is the numeric value 1. It is an error for any expression on the left hand side to return a value
other than the truth values 0 or 1.

3.1.1.2 Set Expressions

A set expression has the following syntax:

set_expr ::
"{" set_elem "," ... "," set_elem "}" ;; set definition

| simple_expr "in" simple_expr ;; set inclusion test
| simple_expr "union" simple_expr ;; set union

set_elem :: simple_expr

A set can be defined by enumerating its elements inside curly braces ‘{...}’. The inclusion
operator ‘in’ tests a value for membership in a set. The union operator ‘union’ takes the union
of two sets. If either argument is a number or a symbolic value instead of a set, it is coerced to
a singleton set.

3.1.2 Next Expressions

While simple expressions can represent sets of states, next expressions relate current and
next state variables to express transitions in the FSM. The structure of next expressions is
similar to the structure of simple expressions (See Section 3.1.1 [Simple Expressions], page 21).
The difference is that next expression allow to refer to next state variables. The grammar is
depicted below.

next_expr ::
atom ;; a symbolic constant
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| number ;; a numeric constant
| "TRUE" ;; The boolean constant 1
| "FALSE" ;; The boolean constant 0
| var_id ;; a variable identifier
| "(" next_expr ")"
| "next" "(" simple_expr ")" ;; next value of an "expression"
| "!" next_expr ;; logical not
| next_expr "&" next_expr ;; logical and
| next_expr "|" next_expr ;; logical or
| next_expr "xor" next_expr ;; logical exclusive or
| next_expr "->" next_expr ;; logical implication
| next_expr "<->" next_expr ;; logical equivalence
| next_expr "=" next_expr ;; equality
| next_expr "!=" next_expr ;; inequality
| next_expr "<" next_expr ;; less than
| next_expr ">" next_expr ;; greater than
| next_expr "<=" next_expr ;; less than or equal
| next_expr ">=" next_expr ;; greater than or equal
| next_expr "+" next_expr ;; integer addition
| next_expr "-" next_expr ;; integer subtraction
| next_expr "*" next_expr ;; integer multiplication
| next_expr "/" next_expr ;; integer division
| next_expr "mod" next_expr ;; integer remainder
| set_next_expr ;; a set next_expression
| case_next_expr ;; a case expression

set_next_expr and case_next_expr are the same as set_simple_expr (see Section 3.1.1.2 [Set
Expressions], page 22) and case_simple_expr (see Section 3.1.1.1 [Case Expressions], page 22)
respectively, with the replacement of "simple" with "next". The only additional production is
"next" "(" simple_expr ")", which allows to “shift” all the variables in simple_expr to the
next state. The next operator distributes on every operator. For instance, the formula next((A

& B) | C) is a shorthand for the formula (next(A) & next(B)) | next(C). It is an error if in
the scope of the next operator occurs another next operator.

3.2 Definition of the FSM

3.2.1 State Variables

A state of the model is an assignment of values to a set of state variables. These variables
(and also instances of modules) are declared by the notation:

var_declaration :: "VAR"
atom ":" type ";"
atom ":" type ";"
...

The type associated with a variable declaration can be either a boolean, a scalar, a user defined
module, or an array of any of these (including arrays of arrays).

3.2.1.1 Type Specifiers

A type specifier has the syntax:

type :: boolean
| "{" val "," val "," ... val "}"
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| number ".." number
| "array" number ".." number "of" type
| atom [ "(" simple_expr "," simple_expr "," ... ")" ]
| "process" atom [ "(" simple_expr "," ... "," simple_expr ")" ]

val :: atom
| number

A variable of type boolean can take on the numerical values 0 and 1 (representing false
and true, respectively). In the case of a list of values enclosed in quotes (where atoms are taken
to be symbolic constants), the variable is a scalar which take any of these values. In the case of
an array declaration, the first simple_expr is the lower bound on the subscript and the second
simple_expr is the upper bound. Both of these expressions must evaluate to integer constants.
Finally, an atom optionally followed by a list of expressions in parentheses indicates an instance
of module atom (See Section 3.2.9 [MODULE declarations], page 26). The keyword causes the
module to be instantiated as an asynchronous process (See Section 3.2.12 [Processes], page 29).

3.2.2 Input Variables

A state of the model is an assignment of values to a set of state variables. These variables
(and also instances of modules) are declared by the notation:

ivar_declaration :: "IVAR"
atom ":" type ";"
atom ":" type ";"
...

The type associated with a variable declaration can be either a boolean, a scalar, a user de-
fined module, or an array of any of these (including arrays of arrays) (See Section 3.2.1 [State
Variables], page 23).

3.2.3 ASSIGN declarations

An assignment has the form:

assign_declaration :: "ASSIGN"
assign_body ";"
assign_body ";"
...

assign_body ::
atom ":=" simple_expr ;; normal assignment

| "init" "(" atom ")" ":=" simple_expr ;; init assignment
| "next" "(" atom ")" ":=" next_expr ;; next assignment

On the left hand side of the assignment, atom denotes the current value of a variable,
‘init(atom)’ denotes its initial value, and ‘next(atom)’ denotes its value in the next state.
If the expression on the right hand side evaluates to an integer or symbolic constant, the as-
signment simply means that the left hand side is equal to the right hand side. On the other
hand, if the expression evaluates to a set, then the assignment means that the left hand side is
contained in that set. It is an error if the value of the expression is not contained in the range
of the variable on the left hand side.

In order for a program to be implementable, there must be some order in which the assign-
ments can be executed such that no variable is assigned after its value is referenced. This is not
the case if there is a circular dependency among the assignments in any given process. Hence,
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such a condition is an error. It is also an error for a variable to be assigned more than once at
any given time. More precisely, it is an error if:

1. the next or current value of a variable is assigned more than once in a given process, or

2. the initial value of a variable is assigned more than once in the program, or

3. the current value and the initial value of a variable are both assigned in the program, or

4. the current value and the next value of a variable are both assigned in the program.

3.2.4 TRANS declarations

The transition relation R of the model is a set of current state/next state pairs. Whether
or not a given pair is in this set is determined by a boolean valued expression T, introduced by
the ‘TRANS’ keyword. The syntax of a TRANS declaration is:

trans_declaration :: "TRANS" trans_expr [";"]

trans_expr :: next_expr

It is an error for the expression to yield any value other than 0 or 1. If there is more than
one TRANS declaration, the transition relation is the conjunction of all of TRANS declarations.

3.2.5 INIT declarations

The set of initial states of the model is determined by a boolean expression under the ‘INIT’
keyword. The syntax of a INIT declaration is:

init_declaration :: "INIT" init_expr [";"]

init_expr :: simple_expr

It is an error for the expression to contain the next() operator, or to yield any value other
than 0 or 1. If there is more than one INIT declaration, the initial set is the conjunction of all
of the INIT declarations.

3.2.6 INVAR declarations

The set of invariant states (i.e. the analogous of normal assignments, as described in
Section 3.2.3 [ASSIGN declarations], page 24) can be specified using a boolean expression under
the ‘INVAR’ keyword. The syntax of a INVAR declaration is:

invar_declaration :: "INVAR" invar_expr [";"]

invar_expr :: simple_expr

It is an error for the expression to contain the next() operator, or to yield any value other
than 0 or 1. If there is more than one INVAR declaration, the invariant set is the conjunction of
all of the INVAR declarations.

3.2.7 DEFINE declarations

In order to make descriptions more concise, a symbol can be associated with a commonly
expression. The syntax for this kind of declaration is:

define_declaration :: "DEFINE"
atom ":=" simple_expr ";"
atom ":=" simple_expr ";"
...
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atom ":=" simple_expr ";"

Whenever an identifier referring to the symbol on the left hand side of the ‘:=’ in a DEFINE

occurs in an expression, it is replaced by the expression on the right hand side. The expression
on the right hand side is always evaluated in its context, however (see Section 3.2.9 [MODULE
declarations], page 26 for an explanation of contexts). Forward references to defined symbols
are allowed, but circular definitions are not allowed, and result in an error.

It is not possible to assign values to defined symbols non-deterministically. Another differ-
ence between defined symbols and variables is that while variables are statically typed, definitions
are not.

3.2.8 ISA declarations

There are cases in which some parts of a module could be shared among different modules,
or could be used as a module themselves. In NuSMV it is possible to declare the common parts
as separate modules, and then use the ISA declaration to import the common parts inside a
module declaration.

The syntax of an ISA declaration is as follows:

isa_declaration :: "ISA" atom

where atom must be the name of a declared module. The ISA declaration can be thought as
a simple macro expansion command, because the body of the module referenced by an ISA

command is replaced to the ISA declaration.

3.2.9 MODULE declarations

A module is an encapsulated collection of declarations. Once defined, a module can be
reused as many times as necessary. Modules can also be so that each instance of a module
can refer to different data values. A module can contain instances of other modules, allowing a
structural hierarchy to be built.

The syntax of a module declaration is as follows.

module ::
"MODULE" atom [ "(" atom "," atom "," ... atom ")" ]
[ var_declaration ]
[ ivar_declaration ]
[ assign_declaration ]
[ trans_declaration ]
[ init_declaration ]
[ invar_declaration ]
[ spec_declaration ]
[ checkinvar_declaration ]
[ ltlspec_declaration ]
[ compute_declaration ]
[ fairness_declaration ]
[ define_declaration ]
[ isa_declaration ]

The atom immediately following the keyword "MODULE" is the name associated with the
module. Module names are drawn from a separate name space from other names in the program,
and hence may clash with names of variables and definitions. The optional list of atoms in
parentheses are the formal parameters of the module. Whenever these parameters occur in
expressions within the module, they are replaced by the actual parameters which are supplied
when the module is instantiated (see below).
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An instance of a module is created using the VAR declaration (see Section 3.2.1 [State
Variables], page 23). This declaration supplies a name for the instance, and also a list of actual
parameters, which are assigned to the formal parameters in the module definition. An actual
parameter can be any legal expression. It is an error if the number of actual parameters is
different from the number of formal parameters. The semantic of module instantiation is similar
to call-by-reference. For example, in the following program fragment:

MODULE main
...
VAR
a : boolean;
b : foo(a);

...
MODULE foo(x)
ASSIGN

x := 1;

the variable a is assigned the value 1. This distinguishes the call-by-reference mechanism from
a call-by-value scheme.

Now consider the following program:

MODULE main
...
DEFINE

a := 0;
VAR

b : bar(a);
...
MODULE bar(x)
DEFINE

a := 1;
y := x;

In this program, the value of y is 0. On the other hand, using a call-by-name mechanism, the
value of y would be 1, since a would be substituted as an expression for x.

Forward references to module names are allowed, but circular references are not, and result in
an error.

3.2.10 Identifiers

An id, or identifier, is an expression which references an object. Objects are instances of
modules, variables, and defined symbols. The syntax of an identifier is as follows.

id ::
atom
| "self"
| id "." atom
| id "[" simple_expr "]"

An atom identifies the object of that name as defined in a VAR or DEFINE declaration. If
a identifies an instance of a module, then the expression ‘a.b’ identifies the component object
named ‘b’ of instance ‘a’. This is precisely analogous to accessing a component of a structured
data type. Note that an actual parameter of module ‘a’ can identify another module instance
‘b’, allowing ‘a’ to access components of ‘b’, as in the following example:

MODULE main
... VAR
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a : foo(b);
b : bar(a);

...

MODULE foo(x)
DEFINE

c := x.p | x.q;

MODULE bar(x)
VAR

p : boolean;
q : boolean;

Here, the value of ‘c’ is the logical or of ‘p’ and ‘q’.

If ‘a’ identifies an array, the expression ‘a[b]’ identifies element ‘b’ of array ‘a’. It is an
error for the expression ‘b’ to evaluate to a number outside the subscript bounds of array ‘a’, or
to a symbolic value.

It is possible to refer the name the current module has been instantiated to by using the
self builtin identifier.

MODULE element(above, below, token)
VAR

Token : boolean;

ASSIGN
init(Token) := token;
next(Token) := token-in;

DEFINE
above.token-in := Token;
grant-out := below.grant-out;

MODULE cell
VAR

e2 : element(self, e1, 0);
e1 : element(e1 , self, 1);

DEFINE
e1.token-in := token-in;
grant-out := grant-in & !e1.grant-out;

MODULE main
VAR c1 : cell;

In this example the name the cell module has been instantiated to is passed to the sub-
module element. In the main module, declaring c1 to be an instance of module cell and
defining above.token-in in module e2, really amounts to defining the symbol c1.token-in.
When you, in the cell module, declare e1 to be an instance of module element, and you define
grant-out in module e1 to be below.grant-out, you are really defining it to be the symbol
c1.grant-out.

3.2.11 The main module

The syntax of a NuSMV program is:
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program ::
module_1
module_2
...
module_n

There must be one module with the name main and no formal parameters. The module
main is the one evaluated by the interpreter.

3.2.12 Processes

Processes are used to model interleaving concurrency. A process is a module which is
instantiated using the keyword ‘process’ (see Section 3.2.1 [State Variables], page 23). The
program executes a step by non-deterministically choosing a process, then executing all of the
assignment statements in that process in parallel. It is implicit that if a given variable is not
assigned by the process, then its value remains unchanged. Each instance of a process has a
special boolean variable associated with it called running. The value of this variable is 1 if and
only if the process instance is currently selected for execution. A process may run only when its
parent is running. In addition no two processes with the same parents may be running at the
same time.

3.2.13 FAIRNESS declarations

A fairness constraint restricts the attention only to fair execution paths. When evaluating
specifications, the model checker considers path quantifiers to apply only to fair paths.

NuSMV supports two types of fairness constraints, namely justice constraints and compassion
constraints. A justice constraint consists of a formula f which is assumed to be true infinitely
often in all the fair paths. In NuSMV justice constraints are identified by keywords JUSTICE and,
for backward compatibility, FAIRNESS. A compassion constraint consists of a pair of formulas
(p,q); if property p is true infinitely often in a fair path, then also formula q has to be true
infinitely often in the fair path. In NuSMV compassion constraints are identified by keyword
COMPASSION.1

Fairness constraints are declared using the following syntax:

fairness_declaration ::
"FAIRNESS" simple_expr [";"]

| "JUSTICE" simple_expr [";"]
| "COMPASSION" "(" simple_expr "," simple_expr ")" [";"]

A path is considered fair if and only if it satisfies all the constraints declared in this manner.

3.3 Specifications

The specifications to be checked on the FSM can be expressed in two different temporal
logics: the Computation Tree Logic CTL, and the Linear Temporal Logic LTL extended with
Past Operators. It is also possible to analyze quantitative characteristics of the FSM by spec-
ifying real-time CTL specifications. Specifications can be positioned within modules, in which
case they are preprocessed to rename the variables according to the containing context.

CTL and LTL specifications are evaluated by NuSMV in order to determine their truth or
falsity in the FSM. When a specification is discovered to be false, NuSMV constructs and prints
a counterexample, i.e. a trace of the FSM that falsifies the property.

1 In the current version of NuSMV, compassion constraints are supported only for BDD-based LTL model
checking. We plan to add support for compassion constraints also for CTL specifications and in Bounded
Model Checking in the next releases of NuSMV.
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3.3.1 CTL Specifications

A CTL specification is given as a formula in the temporal logic CTL, introduced by the
keyword ‘SPEC’. The syntax of this declaration is:

spec_declaration :: "SPEC" spec_expr [";"]

spec_expr :: ctl_expr

The syntax of CTL formulas recognized by the NuSMV parser is as follows:

ctl_expr ::
simple_expr ;; a simple boolean expression
| "(" ctl_expr ")"
| "!" ctl_expr ;; logical not
| ctl_expr "&" ctl_expr ;; logical and
| ctl_expr "|" ctl_expr ;; logical or
| ctl_expr "xor" ctl_expr ;; logical exclusive or
| ctl_expr "->" ctl_expr ;; logical implies
| ctl_expr "<->" ctl_expr ;; logical equivalence
| "EG" ctl_expr ;; exists globally
| "EX" ctl_expr ;; exists next state
| "EF" ctl_expr ;; exists finally
| "AG" ctl_expr ;; forall globally
| "AX" ctl_expr ;; forall next state
| "AF" ctl_expr ;; forall finally
| "E" "[" ctl_expr "U" ctl_expr "]" ;; exists until
| "A" "[" ctl_expr "U" ctl_expr "]" ;; forall until

It is an error for an expressions in a CTL formula to contain a ‘next()’ operator, or to have
non-boolean components, i.e. subformulas which evaluate to a value other than 0 or 1.

It is also possible to specify invariants, i.e. propositional formulas which must hold invari-
antly in the model. The corresponding command is ‘INVARSPEC’, with syntax:

checkinvar_declaration :: "INVARSPEC" simple_expr ";"

This statement corresponds to

SPEC AG simple_expr ";"

but can be checked by a specialized algorithm during reachability analysis.

3.3.2 LTL Specifications

LTL specifications are introduced by the keyword ‘LTLSPEC’. The syntax of this declaration
is:

ltlspec_declaration :: "LTLSPEC" ltl_expr [";"]

where

ltl_expr ::
simple_expr ;; a simple boolean expression
| "(" ltl_expr ")"
| "!" ltl_expr ;; logical not
| ltl_expr "&" ltl_expr ;; logical and
| ltl_expr "|" ltl_expr ;; logical or
| ltl_expr "xor" ltl_expr ;; logical exclusive or
| ltl_expr "->" ltl_expr ;; logical implies
| ltl_expr "<->" ltl_expr ;; logical equivalence
;; FUTURE
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| "X" ltl_expr ;; next state
| "G" ltl_expr ;; globally
| "F" ltl_expr ;; finally
| ltl_expr "U" ltl_expr ;; until
| ltl_expr "V" ltl_expr ;; releases
;; PAST
| "Y" ltl_expr ;; previous state
| "Z" ltl_expr ;; not previous state not
| "H" ltl_expr ;; historically
| "O" ltl_expr ;; once
| ltl_expr "S" ltl_expr ;; since
| ltl_expr "T" ltl_expr ;; triggered

In NuSMV, LTL specifications can be analyzed both by means of BDD-based reasoning, or by
means of SAT-based bounded model checking. In the first case, NuSMV proceeds along the lines
described in [CGH97]. For each LTL specification, a tableau able to recognize the behaviors
falsifying the property is constructed, and then synchronously composed with the model. With
respect to [CGH97], the approach is fully integrated within NuSMV, and allows for full treatment
of past temporal operators. In the case of BDD-based reasoning, the counterexample generated
to show the falsity of a LTL specification may contain state variables which have been introduced
by the tableau construction procedure.

In the second case, a similar tableau construction is carried out to encode the existence of
a path of limited length violating the property. NuSMV generates a propositional satisfiability
problem, that is then tackled by means of an efficient SAT solver [BCCZ99].

In both cases, the tableau constructions are completely transparent to the user.

3.3.3 Real Time CTL Specifications and Computations

NuSMV allows for Real Time CTL specifications [EMSS90]. NuSMV assumes that each tran-
sition takes unit time for execution. RTCTL extends the syntax of CTL path expressions with
the following bounded modalities:

rtctl_expr ::
ctl_expr

| "EBF" range rtctl_expr
| "ABF" range rtctl_expr
| "EBG" range rtctl_expr
| "ABG" range rtctl_expr
| "A" "[" rtctl_expr "BU" range rtctl_expr "]"
| "E" "[" rtctl_expr "BU" range rtctl_expr "]"

range :: number ".." number"

Intuitively, in the formula E [ a BU m..n b ] m (n, resp.) represents the minimum (maxi-
mum) number of permitted transition along a path of a structure before the eventuality holds.

Real time CTL specifications can be defined with the following syntax, which extends the
syntax for CTL specifications.

spec_declaration :: "SPEC" rtctl_expr [";"]

With the ‘COMPUTE’ statement, it is also possible to compute quantitative information on
the FSM. In particular, it is possible to compute the exact bound on the delay between two
specified events, expressed as CTL formulas. The syntax is the following:

compute_declaration :: "COMPUTE" compute_expr [";"]

where
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compute_expr ::
"MIN" "[" rtctl_expr "," rtctl_expr "]"

| "MAX" "[" rtctl_expr "," rtctl_expr "]"

MIN [start , final] computes the set of states reachable from start. If at any point, we encounter
a state satisfying final, we return the number of steps taken to reach the state. If a fixed point
is reached and no states intersect final then infinity is returned.

MAX [start , final] returns the length of the longest path from a state in start to a state in final.
If there exists an infinite path beginning in a state in start that never reaches a state in final,
then infinity is returned.
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4 Running NuSMV interactively

The main interaction mode of NuSMV is through an interactive shell. In this mode NuSMV

enters a read-eval-print loop. The user can activate the various NuSMV computation steps as
system commands with different options. These steps can therefore be invoked separately,
possibly undone or repeated under different modalities. These steps include the construction
of the model under different partitioning techniques, model checking of specifications, and the
configuration of the BDD package. The interactive shell of NuSMV is activated from the system
prompt as follows (‘NuSMV>’ is the default NuSMV shell prompt):

system_prompt> NuSMV -int 〈RET〉

NuSMV>

A NuSMV command is a sequence of words. The first word specifies the command to be executed.
The remaining words are arguments to the invoked command. Commands separated by a ‘;’
are executed sequentially; the NuSMV shell waits for each command to terminate in turn. The
behavior of commands can depend on environment variables, similar to "csh" environment
variables.

reset

goread_model

flatten_hierarchy

build_model

encode_variables

go_bmc

check_ltlspec
check_invar
check_trans

check_spec

compute_reachable
simulate

compute_reachable

check_ltlspec_bmc
gen_ltlspec_bmc
check_invar_bmc
gen_invar_bmc
bmc_simulate
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In the following we present the possible commands followed by the related environment
variables, classified in different categories. Every command answers to the option -h by printing
out the command usage. When output is paged for some commands (option -m), it is piped
through the program specified by the UNIX PAGER shell variable, if defined, or through UNIX
command "more". Environment variables can be assigned a value with the set command.

Command sequences to NuSMV must obey the (partial) order specified in the figure depicted
in the previous page. For instance, it is not possible to evaluate CTL expressions before the
model is built.

The verbosity of NuSMV is controlled by the following environment variable.

Environment Variableverbose level
Controls the verbosity of the system. Possible values are integers from 0 (no messages) to
4 (full messages). The default value is 0.

4.1 Model Reading and Building

The following commands allow for the parsing and the compilation of the model into BDD.

Commandread model - Reads a NuSMV file into NuSMV.
read_model [-h] [-i model-file]

Reads a NuSMV file. If the -i option is not specified, it reads from the file specified in
the environment variable input_file.

Command options:

-i model-file

Sets the environment variable input_file to model-file, and reads the
model from the specified file.

Environment Variableinput file
Stores the name of the input file containing the model. It can be set by the ‘set’ command
or by the command line option ‘-i ’. There is no default value.

Commandflatten hierarchy - Flattens the hierarchy of modules
flatten_hierarchy [-h]

This command is responsible of the instantiation of modules and processes. The instanti-
ation is performed by substituting the actual parameters for the formal parameters, and
then by prefixing the result via the instance name.

Commandshow vars - Shows model’s symbolic variables and their values
show_vars [-h] [-s] [-i] [-m | -o output-file]

Prints symbolic input and state variables of the model with their range of values (as
defined in the input file).

Command Options:

-s

Prints only state variables.

-i

Prints only input variables.
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-m

Pipes the output to the program specified by the PAGER shell variable if de-
fined, else through the UNIX command "more".

-o output-file

Writes the output generated by the command to output-file

Commandencode variables - Builds the BDD variables necessary to compile the
model into BDD.

encode_variables [-h] [-i order-file]

Generates the boolean BDD variables and the ADD needed to encode propositionally the
(symbolic) variables declared in the model.
The variables are created as default in the order in which they appear in a depth first
traversal of the hierarchy.

The input order file can be partial and can contain variables not declared in the model.
Variables not declared in the model are simply discarded. Variables declared in the model
which are not listed in the ordering input file will be created and appended at the end of
the given ordering list, according to the default ordering.

Command options:

-i order-file

Sets the environment variable input_order_file to order-file, and reads
the variable ordering to be used from file order-file. This can be combined
with the write_order command. The variable ordering is written to a file,
which can be inspected and reordered by the user, and then read back in.

Environment Variableinput order file
Indicates the file name containing the variable ordering to be used in building the model
by the ‘encode_variables’ command. There is no default value.

Commandwrite order - Writes variable order to file.
write_order [-h] [(-o | -f) order-file]

Writes the current order of BDD variables in the file specified via the -o option. If no
option is specified the environment variable output_order_file will be considered. If
the variable output_order_file is unset (or set to an empty value) then standard output
will be used.

Command options:

-o order-file

Sets the environment variable output_order_file to order-file and then
dumps the ordering list into that file.

-f order-file

Alias for -o option. Supplied for backward compatibility.

Environment Variableoutput order file
The file where the current variable ordering has to be written. The default value is
‘temp.ord’.



Chapter 4: Running NuSMV interactively 36

Commandbuild model - Compiles the flattened hierarchy into BDD
build_model [-h] [-f] [-m Method]

Compiles the flattened hierarchy into BDD (initial states, invariants, and transition re-
lation) using the method specified in the environment variable partition_method for
building the transition relation.

Command options:

-m Method

Sets the environment variable partition_method to the value Method, and
then builds the transition relation. Available methods are Monolithic,
Threshold and Iwls95CP.

-f

Forces model construction. By default, only one partition method is allowed.
This option allows to overcome this default, and to build the transition relation
with different partitioning methods.

Environment Variablepartition method
The method to be used in building the transition relation, and to compute images and
preimages. Possible values are:

• Monolithic. No partitioning at all.

• Threshold. Conjunctive partitioning, with a simple threshold heuristic. Assignments
are collected in a single cluster until its size grows over the value specified in the
variable conj_part_threshold. It is possible (default) to use affinity clustering to
improve model checking performance. See affinity variable.

• Iwls95CP. Conjunctive partitioning, with clusters generated and ordered according to
the heuristic described in [RAP+95]. Works in conjunction with the variables image_
cluster_size, image_W1, image_W2, image_W3, image_W4. It is possible (default)
to use affinity clustering to improve model checking performance. See affinity

variable. It is also possible to avoid (default) preordering of clusters (see [RAP+95])
using iwls95preorder variable.

Environment Variableconj part threshold
The limit of the size of clusters in conjunctive partitioning. The default value is 0 BDD
nodes.

Environment Variableaffinity
Enables affinity clustering heuristic described in [MOON00], possible values are 0 or 1.
The default value is 1.

Environment Variablesimage cluster size, image W{1,2,3,4}
The parameters to configure the behavior of the Iwls95CP partitioning algorithm. image_
cluster_size is used as threshold value for the clusters. The default value is 1000 BDD
nodes. The other parameters attribute different weights to the different factors in the
algorithm. The default values are 6, 1, 1, 2 respectively. (For a detailed description,
please refer to [RAP+95].)

Environment Variableiwls95preorder
Enables cluster preordering following heuristic described in [RAP+95], possible values are
0 or 1. The default value is 0. Preordering can be very slow.
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Environment Variableimage verbosity
Sets the verbosity for the image method Iwls95CP, possible values are 0 or 1. The default
value is 0.

Commandprint iwls95options - Prints the Iwls95 Options.
print_iwls95options [-h]

This command prints out the configuration parameters of the IWLS95 clustering algo-
rithm, i.e. image_verbosity, image_cluster_size and image_W1,2,3,4.

Commandgo - Initializes the system for the verification.
go [-h]

This command initializes the system for verification. It is equivalent to the command
sequence read_model, flatten_hierarchy, encode_variables, build_model, build_

flat_model, build_boolean_model. If some commands have already been executed,
then only the remaining ones will be invoked.

Command options:

-h

Prints the command usage.

Commandprocess model - Performs the batch steps and then returns control to the
interactive shell.

process_model [-h] [-i model-file] [-m Method]

Reads the model, compiles it into BDD and performs the model checking of all the speci-
fication contained in it. If the environment variable forward_search has been set before,
then the set of reachable states is computed. If the environment variables enable_reorder
and reorder_method are set, then the reordering of variables is performed accordingly.
This command simulates the batch behavior of NuSMV and then returns the control to
the interactive shell.

Command options:

-i model-file

Sets the environment variable input_file to file model-file, and reads the
model from file model-file.

-m Method

Sets the environment variable partition_method to Method and uses it as
partitioning method.

4.2 Commands for Checking Specifications

The following commands allow for the BDD-based model checking of a NuSMV model.

Commandcompute reachable - Computes the set of reachable states
compute_reachable [-h]

Computes the set of reachable states. The result is then used to simplify image and preim-
age computations. This can result in improved performances for models with sparse state
spaces. Sometimes this option may slow down the performances because the computation
of reachable states may be very expensive. The environment variable forward_search is
set during the execution of this command.
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Commandprint reachable states - Prints out the number of reachable states. In
verbose mode, prints also the list of reachable states.

print_reachable_states [-h] [-v]

Prints the number of reachable states of the given model. In verbose mode, prints also
the list of all reachable states. The reachable states are computed if needed.

Commandcheck trans - Checks the transition relation for totality.
check_trans [-h] [-m | -o output-file]

Checks if the transition relation is total. If the transition relation is not total then a
potential deadlock state is shown out.

Command options:

-m

Pipes the output generated by the command to the program specified by the
PAGER shell variable if defined, else through the UNIX command "more".

-o output-file

Writes the output generated by the command to the file output-file.

At the beginning reachable states are computed in order to guarantee that deadlock states
are actually reachable.

Environment Variablecheck trans
Controls the activation of the totality check of the transition relation during the process_
model call. Possible values are 0 or 1. Default value is 0.

Commandcheck spec - Performs fair CTL model checking.
check_spec [-h] [-m | -o output-file] [-n number | -p "ctl-expr [IN context]"]

Performs fair CTL model checking.

A ctl-expr to be checked can be specified at command line using option -p. Alternatively,
option -n can be used for checking a particular formula in the property database. If neither
-n nor -p are used, all the SPEC formulas in the database are checked.

Command options:

-m

Pipes the output generated by the command in processing SPECs to the pro-
gram specified by the PAGER shell variable if defined, else through the UNIX

command "more".

-o output-file

Writes the output generated by the command in processing SPECs to the file
output-file.

-p "ctl-expr [IN context]"

A CTL formula to be checked. context is the module instance name which
the variables in ctl-expr must be evaluated in.

-n number

Checks the CTL property with index number in the property database.

If the ag_only_search environment variable has been set, and the set of reachable states
has been already computed, then a specialized algorithm to check AG formulas is used
instead of the standard model checking algorithms.
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Environment Variableag only search
Enables the use of an ad hoc algorithm for checking AG formulas. The algorithm, given
a formula of the form AG alpha, computes the set of states satisfying alpha, and checks
whether it contains the reachable states is the empty set. If this is the case, then the
property is verified, else a counterexample is printed.

Environment Variableforward search
Enables the computation of the reachable states during the process_model command and
when used in conjunction with the ag_only_search environment variable enables the use
of an ad hoc algorithm to verify invariants.

Commandcheck invar - Performs model checking of invariants
check_invar [-h] [-m | -o output-file] [-n number | -p "invar-expr [IN

context]"]

Performs invariant checking on the given model. An invariant is a set of states. Checking
the invariant is the process of determining that all states reachable from the initial states lie
in the invariant. Invariants to be verified can be provided as simple formulas (without any
temporal operators) in the input file via the INVARSPEC keyword or directly at command
line, using the option -p.

Option -n can be used for checking a particular invariant of the model. If neither -n nor
-p are used, all the invariants are checked.

During checking of invariant all the fairness conditions associated with the model are
ignored.

If an invariant does not hold, a proof of failure is demonstrated. This consists of a path
starting from an initial state to a state lying outside the invariant. This path has the
property that it is the shortest path leading to a state outside the invariant.

Command options:

-m

Pipes the output generated by the program in processing INVARSPECs to the
program specified by the PAGER shell variable if defined, else through the UNIX
command "more".

-o output-file

Writes the output generated by the command in processing INVARSPECs to
the file output-file.

-p "invar-expr [IN context]"

The command line specified invariant formula to be verified. context is the
module instance name which the variables in invar-expr must be evaluated
in.

Commandcheck ltlspec - Performs LTL model checking
check_ltlspec [-h] [-m | -o output-file] [-n number | -p "ltl-expr [IN

context]"]

Performs model checking of LTL formulas. LTL model checking is reduced to CTL model
checking as described in the paper by [CGH97].

A ltl-expr to be checked can be specified at command line using option -p. Alternatively,
option -n can be used for checking a particular formula in the property database. If neither
-n nor -p are used, all the LTLSPEC formulas in the database are checked.

Command options:
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-m

Pipes the output generated by the command in processing LTLSPECs to the
program specified by the PAGER shell variable if defined, else through the Unix
command "more".

-o output-file

Writes the output generated by the command in processing LTLSPECs to the
file output-file.

-p "ltl-expr [IN context]"

An LTL formula to be checked. context is the module instance name which
the variables in ltl_expr must be evaluated in.

-n number

Checks the LTL property with index number in the property database.

Commandcompute - Performs computation of quantitative characteristics
compute [-h] [-m | -o output-file] [-n number | -p "compute-expr [IN

context]"]

This command deals with the computation of quantitative characteristics of real time
systems. It is able to compute the length of the shortest (longest) path from two given
set of states.

MAX [ alpha , beta ]

MIN [ alpha , beta ]

Properties of the above form can be specified in the input file via the keyword COMPUTE

or directly at command line, using option -p.

Option -n can be used for computing a particular expression in the model. If neither -n

nor -p are used, all the COMPUTE specifications are computed.

Command options:

-m

Pipes the output generated by the command in processing COMPUTEs to the
program specified by the PAGER shell variable if defined, else through the UNIX
command "more".

-o output-file

Writes the output generated by the command in processing COMPUTEs to the
file output-file.

-p "compute-expr [IN context]"

A COMPUTE formula to be checked. context is the module instance name
which the variables in compute-expr must be evaluated in.

-n number

Computes only the property with index number

Commandadd property - Adds a property to the list of properties
add_property [-h] [(-c | -l | -i | -q) -p "formula [IN context]"]

Adds a property in the list of properties. It is possible to insert LTL, CTL, INVAR
and quantitative (COMPUTE) properties. Every newly inserted property is initialized to
unchecked. A type option must be given to properly execute the command.
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Command options:

-c

Adds a CTL property.

-l

Adds an LTL property.

-i

Adds an INVAR property.

-q

Adds a quantitative (COMPUTE) property.

-p "formula [IN context]"

Adds the formula specified on the command-line.
context is the module instance name which the variables in formula must be
evaluated in.

4.3 Commands for Bounded Model Checking

In this section we describe in detail the commands for doing and controlling Bounded Model
Checking in NuSMV.

Bounded Model Checking is based on the reduction of the bounded model checking problem
to a propositional satisfiability problem. After the problem is generated, NuSMV internally calls
a propositional SAT solver in order to find an assignment which satisfies the problem. Currently
NuSMV supplies two SAT solvers: SIM and Zchaff. Notice that Zchaff is for non-commercial
purposes only, and is therefore not included in the source code distribution, as well as in some
of the binary distributions of NuSMV. It is also possible to generate the satisfiability problem
without calling the SAT solver. Each generated problem is dumped in DIMACS format into a
file. DIMACS is the standard format used as input by most external SAT solver, so it is possible
to use NuSMV with an external SAT solver separately.

Commandbmc setup - Builds the model in a Boolean Epression format.
bmc_setup [-h]

You must call this command before use any other bmc-related command. Only one call
per session is required.

Commandgo bmc - Initializes the system for the BMC verification.
go_bmc [-h]

This command initializes the system for verification. It is equivalent to the command
sequence read_model, flatten_hierarchy, encode_variables, build_boolean_model,
bmc_setup. If some commands have already been executed, then only the remaining ones
will be invoked.

Command options:

-h

Prints the command usage.
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Commandcheck ltlspec bmc - Checks the given LTL specification, or all LTL
specifications if no formula is given. Checking parameters are the maximum length
and the loopback values

check_ltlspec_bmc [-h | -n idx | -p "formula" [IN context]] [-k max_length]

[-l loopback] [-o filename]

This command generates one or more problems, and calls SAT solver for each one. Each
problem is related to a specific problem bound, which increases from zero (0) to the given
maximum problem length. Here "length" is the bound of the problem that system is going
to generate and/or solve.
In this context the maximum problem bound is represented by the -k command parame-
ter, or by its default value stored in the environment variable bmc length.
The single generated problem also depends on the "loopback" parameter you can explic-
itly specify by the -l option, or by its default value stored in the environment variable
bmc loopback.
The property to be checked may be specified using the -n idx or the -p "formula" options.
If you need to generate a dimacs dump file of all generated problems, you must use the
option -o "filename".

Command options:

-n index

index is the numeric index of a valid LTL specification formula actually located
in the properties database.

-p "formula" [IN context]

Checks the formula specified on the command-line.
context is the module instance name which the variables in formula must be
evaluated in.

-k max length
max length is the maximum problem bound must be reached. Only natural
number are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback
loopback value may be:
- a natural number in (0, max length-1 ). Positive sign (’+’) can be also used
as prefix of the number. Any invalid combination of length and loopback will
be skipped during the generation/solving process.
- a negative number in (-1, -bmc length). In this case loopback is considered a
value relative to max length. Any invalid combination of length and loopback
will be skipped during the generation/solving process.
- the symbol ’X’, which means "no loopback"
- the symbol ’*’, which means "all possible loopback from zero to length-1"

-o filename
filename is the name of the dumped dimacs file. It may contain special symbols
which will be macro-expanded to form the real file name. Possible symbols
are:
- @F: model name with path part
- @f: model name without path part
- @k: current problem bound
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- @l: current loopback value
- @n: index of the currently processed formula in the properties database
- @@: the ’@’ character

Commandcheck ltlspec bmc onepb - Checks the given LTL specification, or all
LTL specifications if no formula is given. Checking parameters are the single
problem bound and the loopback values

check_ltlspec_bmc_onepb [-h | -n idx | -p "formula" [IN context]] [-k length]

[-l loopback] [-o filename]

As command check ltlspec bmc but it produces only one single problem with fixed bound
and loopback values, with no iteration of the problem bound from zero to max length.

Command options:

-n index

index is the numeric index of a valid LTL specification formula actually located
in the properties database.
The validity of index value is checked out by the system.

-p "formula [IN context]"

Checks the formula specified on the command-line.
context is the module instance name which the variables in formula must be
evaluated in.

-k length

length is the problem bound used when generating the single problem. Only
natural number are valid values for this option. If no value is given the
environment variable bmc length is considered instead.

-l loopback
loopback value may be:
- a natural number in (0, max length-1 ). Positive sign (’+’) can be also used
as prefix of the number. Any invalid combination of length and loopback will
be skipped during the generation/solving process.
- a negative number in (-1, -bmc length). In this case loopback is considered a
value relative to length. Any invalid combination of length and loopback will
be skipped during the generation/solving process.
- the symbol ’X’, which means "no loopback"
- the symbol ’*’, which means "all possible loopback from zero to length-1"

-o filename
filename is the name of the dumped dimacs file. It may contain special symbols
which will be macro-expanded to form the real file name. Possible symbols
are:
- @F: model name with path part
- @f: model name without path part
- @k: current problem bound
- @l: current loopback value
- @n: index of the currently processed formula in the properties database
- @@: the ’@’ character
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Commandgen ltlspec bmc - Dumps into one or more dimacs files the given LTL
specification, or all LTL specifications if no formula is given. Generation and
dumping parameters are the maximum bound and the loopback values

gen_ltlspec_bmc [-h | -n idx | -p "formula" [IN context]] [-k max_length] [-l

loopback] [-o filename]

This command generates one or more problems, and dumps each problem into a dimacs
file. Each problem is related to a specific problem bound, which increases from zero (0)
to the given maximum problem bound. In this short description "length" is the bound of
the problem that system is going to dump out.
In this context the maximum problem bound is represented by the max length parameter,
or by its default value stored in the environment variable bmc length.
Each dumped problem also depends on the loopback you can explicitly specify by the -l
option, or by its default value stored in the environment variable bmc loopback.
The property to be checked may be specified using the -n idx or the -p "formula" options.
You may specify dimacs file name by using the option -o "filename", otherwise the default
value stored in the environment variable bmc dimacs filename will be considered.

Command options:

-n index

index is the numeric index of a valid LTL specification formula actually located
in the properties database.
The validity of index value is checked out by the system.

-p "formula [IN context]"

Checks the formula specified on the command-line.
context is the module instance name which the variables in formula must be
evaluated in.

-k max length
max length is the maximum problem bound used when increasing problem
bound starting from zero. Only natural number are valid values for this
option. If no value is given the environment variable bmc length value is
considered instead.

-l loopback
loopback value may be:
- a natural number in (0, max length-1 ). Positive sign (’+’) can be also used
as prefix of the number. Any invalid combination of bound and loopback will
be skipped during the generation and dumping process.
- a negative number in (-1, -bmc length). In this case loopback is considered a
value relative to max length. Any invalid combination of bound and loopback
will be skipped during the generation process.
- the symbol ’X’, which means "no loopback"
- the symbol ’*’, which means "all possible loopback from zero to length-1"

-o filename
filename is the name of dumped dimacs files. If this options is not specified,
variable bmc dimacs filename will be considered. The file name string may
contain special symbols which will be macro-expanded to form the real file
name. Possible symbols are:
- @F: model name with path part
- @f: model name without path part
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- @k: current problem bound
- @l: current loopback value
- @n: index of the currently processed formula in the properties database
- @@: the ’@’ character

Commandgen ltlspec bmc onepb - Dumps into one dimacs file the problem
generated for the given LTL specification, or for all LTL specifications if no formula
is explicitly given. Generation and dumping parameters are the problem bound and
the loopback values

gen_ltlspec_bmc_onepb [-h | -n idx | -p "formula" [IN context]] [-k length]

[-l loopback] [-o filename]

As the gen ltlspec bmc command, but it generates and dumps only one problem given its
bound and loopback.

Command options:

-n index

index is the numeric index of a valid LTL specification formula actually located
in the properties database.
The validity of index value is checked out by the system.

-p "formula [IN context]"

Checks the formula specified on the command-line.
context is the module instance name which the variables in formula must be
evaluated in.

-k length

length is the single problem bound used to generate and dump it. Only natural
number are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback
loopback value may be:
- a natural number in (0, length-1 ). Positive sign (’+’) can be also used as
prefix of the number. Any invalid combination of length and loopback will be
skipped during the generation and dumping process.
- a negative number in (-1, -length). Any invalid combination of length and
loopback will be skipped during the generation process.
- the symbol ’X’, which means "no loopback"
- the symbol ’*’, which means "all possible loopback from zero to length-1"

-o filename
filename is the name of the dumped dimacs file. If this options is not specified,
variable bmc dimacs filename will be considered. The file name string may
contain special symbols which will be macro-expanded to form the real file
name. Possible symbols are:
- @F: model name with path part
- @f: model name without path part
- @k: current problem bound
- @l: current loopback value
- @n: index of the currently processed formula in the properties database
- @@: the ’@’ character
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Environment Variablebmc length
Sets the generated problem bound. Possible values are any natural number, but must be
compatible with the current value held by the variable bmc loopback. The default value
is 10.

Environment Variablebmc loopback
Sets the generated problem loop. Possible values are:

• Any natural number, but lesser than the current value of the variable bmc length. In
this case the loop point is absolute.

• Any negative number, but greater or equal than -bmc length. In this case specified
loop is the loop length.

• The symbol ’X’, which means "no loopback".

• The symbol ’*’, which means "any possible loopbacks".

The default value is *.

Environment Variablebmc dimacs filename
This is the default file name used when generating DIMACS problem dumps. This variable
may be taken into account by all commands which belong to the gen ltlspec bmc family.
DIMACS file name can contain special symbols which will be expanded to represent the
actual file name. Possible symbols are:

• @F The currently loaded model name with full path.

• @f The currently loaded model name without full path.

• @n The numerical index of the currently processed formula in the properties database.

• @k The currently generated problem length.

• @l The currently generated problem loopback value.

The default value is "@f_k@k_l@l_n@n.dimacs".

Commandcheck invar bmc - Generates and solve the given invariant, or all
invariants if no formula is given

check_invar_bmc [-h | -n idx | -p "formula" [IN context]] [-o filename]

Command options:

-n index

index is the numeric index of a valid INVAR specification formula actually
located in the properties database.
The validity of index value is checked out by the system.

-p "formula [IN context]"

Checks the formula specified on the command-line.
context is the module instance name which the variables in formula must be
evaluated in.

-o filename
filename is the name of the dumped dimacs file. It may contain special symbols
which will be macro-expanded to form the real file name. Possible symbols
are:
- @F: model name with path part
- @f: model name without path part
- @n: index of the currently processed formula in the properties database
- @@: the ’@’ character
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Commandgen invar bmc - Generates the given invariant, or all invariants if no
formula is given

gen_invar_bmc [-h | -n idx | -p "formula" [IN context]] [-o filename]

Command options:

-n index

index is the numeric index of a valid INVAR specification formula actually
located in the properties database.
The validity of index value is checked out by the system.

-p "formula" [IN context]

Checks the formula specified on the command-line.
context is the module instance name which the variables in formula must be
evaluated in.

-o filename
filename is the name of the dumped dimacs file. If you do not use
this option the dimacs file name is taken from the environment variable
bmc invar dimacs filename.

File name may contain special symbols which will be macro-expanded to form
the real dimacs file name. Possible symbols are:
- @F: model name with path part
- @f: model name without path part
- @n: index of the currently processed formula in the properties database
- @@: the ’@’ character

Environment Variablebmc invar dimacs filename
This is the default file name used when generating DIMACS invar dumps. This variable
may be taken into account by the command gen invar bmc. DIMACS file name can
contain special symbols which will be expanded to represent the actual file name. Possible
symbols are:

• @F The currently loaded model name with full path.

• @f The currently loaded model name without full path.

• @n The numerical index of the currently processed formula in the properties database.

The default value is "@f_invar_n@n.dimacs".

Environment Variablesat solver
The SAT solver’s name actually to be used. Default SAT solver is SIM. Depending on
the NuSMV configuration, also the Zchaff SAT solver can be available or not. Notice that
Zchaff is for non-commercial purposes only.

Commandbmc simulate - Generates a trace of the model from 0 (zero) to k
bmc_simulate [-h | -k ]

bmc simulate does not require a specification to build the problem, because only the model
is used to build it. The problem length is represented by the -k command parameter, or
by its default value stored in the environment variable bmc length.
Command options:

-k length

length is the length of the generated simulation.
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4.4 Simulation Commands

In this section we describe the commands that allow to simulate a NuSMV specification.

Commandpick state - Picks a state from the set of initial states
pick_state [-h] [-v] [-r | -i [-a]] [-c "constraints"]

Chooses an element from the set of initial states, and makes it the current state (re-
placing the old one). The chosen state is stored as the first state of a new trace ready
to be lengthened by steps states by the simulate command. The state can be chosen
according to different policies which can be specified via command line options. By default
the state is chosen in a deterministic way.

Command Options:

-v

Verbosely prints out chosen state (all state variables, otherwise it prints out
only the label t.1 of the state chosen, where t is the number of the new trace,
that is the number of traces so far generated plus one).

-r

Randomly picks a state from the set of initial states.

-i

Enables the user to interactively pick up an initial state. The user is requested
to choose a state from a list of possible items (every item in the list doesn’t
show state variables unchanged with respect to a previous item). If the num-
ber of possible states is too high, then the user has to specify some further
constraints as "simple expression".

-a

Displays all state variables (changed and unchanged with respect to a previous
item) in an interactive picking. This option works only if the -i options has
been specified.

-c "constraints"

Uses constraints to restrict the set of initial states in which the state has to
be picked. constraints must be enclosed between double quotes " ".

Commandshow traces - Shows the traces generated in a NuSMV session
show_traces [ [-h] [-v] [-m | -o output-file] -t | -a | trace_number ]

Shows the traces currently stored in system memory, if any. By default it shows the last
generated trace, if any.

Command Options:

-v

Verbosely prints traces content (all state variables, otherwise it prints out only
those variables that have changed their value from previous state).

-t

Prints only the total number of currently stored traces.

-a

Prints all the currently stored traces.
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-m

Pipes the output through the program specified by the PAGER shell variable if
defined, else through the UNIX command "more".

-o output-file

Writes the output generated by the command to output-file

trace_number

The (ordinal) identifier number of the trace to be printed.

Environment Variableshowed states
Controls the maximum number of states showed during an interactive simulation session.
Possible values are integers from 1 to 100. The default value is 25.

Commandsimulate - Performs a simulation from the current selected state
simulate [-h] [-p | -v] [-r | -i [-a]] [-c "constraints"] steps

Generates a sequence of at most steps states (representing a possible execution of the
model), starting from the current state. The current state must be set via the pick state
or goto state commands.

It is possible to run the simulation in three ways (according to different command line
policies): deterministic (the default mode), random and interactive.

The resulting sequence is stored in a trace indexed with an integer number taking into
account the total number of traces stored in the system. There is a different behavior in
the way traces are built, according to how current state is set: current state is always put
at the beginning of a new trace (so it will contain at most steps + 1 states) except when
it is the last state of an existent old trace. In this case the old trace is lengthened by at
most steps states.

Command Options:

-p

Prints current generated trace (only those variables whose value changed from
the previous state).

-v

Verbosely prints current generated trace (changed and unchanged state vari-
ables).

-r

Picks a state from a set of possible future states in a random way.

-i

Enables the user to interactively choose every state of the trace, step by step.
If the number of possible states is too high, then the user has to specify
some constraints as simple expression. These constraints are used only for a
single simulation step and are forgotten in the following ones. They are to
be intended in an opposite way with respect to those constraints eventually
entered with the pick state command, or during an interactive simulation
session (when the number of future states to be displayed is too high), that
are local only to a single step of the simulation and are forgotten in the next
one.
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-a

Displays all the state variables (changed and unchanged) during every step
of an interactive session. This option works only if the -i option has been
specified.

-c "constraints"

Performs a simulation in which computation is restricted to states satisfying
those constraints. The desired sequence of states could not exist if such con-
straints were too strong or it may happen that at some point of the simulation
a future state satisfying those constraints doesn’t exist: in that case a trace
with a number of states less than steps trace is obtained. Note: constraints
must be enclosed between double quotes " ".

steps

Maximum length of the path according to the constraints. The length of a
trace could contain less than steps states: this is the case in which simula-
tion stops in an intermediate step because it may not exist any future state
satisfying those constraints.

4.5 Traces Inspection Commands

A trace is a sequence of states corresponding to a possible execution of the model. Traces are
created by NuSMV when a formula is found to be false; they are also generated by the simulation
feature (Section 4.4 [Simulation Commands], page 48). Each trace has a number, and the states
are numbered within the trace. Trace n has states n.1, n.2, n.3, "...".

The trace inspection commands of NuSMV allow to navigate along the traces produced by NuSMV.
During the navigation, there is a current state, and the current trace is the trace the current
state belongs to. The commands are the following:

Commandgoto state - Goes to a given state of a trace
goto_state [-h] state

Makes state the current state. This command is used to navigate alongs traces produced
by NuSMV. During the navigation, there is a current state, and the current trace is the
trace the current state belongs to.

Commandprint current state - Prints out the current state
print_current_state [-h] [-v]

Prints the name of the current state if defined.

Command options:

-v

Prints the value of all the state variables of the current state.

4.6 Interface to the DD Package

NuSMV uses the state of the art BDD package CUDD [Som98]. Control over the BDD
package can very important to tune the performance of the system. In particular, the order
of variables is critical to control the memory and the time required by operations over BDDs.
Reordering methods can be activated to determine better variable orders, in order to reduce the
size of the existing BDDs. Reordering methods can be activated either
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Reordering of the variables can be triggered in two ways: by the user, or by the BDD
package. In the first way, reordering is triggered by the interactive shell command dynamic_

var_ordering with the -f option.

Reordering is triggered by the BDD package when the number of nodes reaches a given
threshold. The threshold is initialized and automatically adjusted after each reordering by the
package. This is called dynamical reordering, and can be enabled or disabled by the user.
Dynamic reordering is enabled with the shell command dynamic_var_ordering with the option
-e, and disabled with the -d option.

Environment Variableenable reorder
Specifies whether dynamic reordering is enabled (when value is ‘0’) or disabled (when
value is ‘1’).

Environment Variablereorder method
Specifies the ordering method to be used when dynamic variable reordering is fired. The
possible values, corresponding to the reordering methods available with the CUDD pack-
age, are listed below. The default value is sift.

sift: Moves each variable throughout the order to find an optimal position for
that variable (assuming all other variables are fixed). This generally achieves
greater size reductions than the window method, but is slower.

random: Pairs of variables are randomly chosen, and swapped in the order. The swap
is performed by a series of swaps of adjacent variables. The best order among
those obtained by the series of swaps is retained. The number of pairs chosen
for swapping equals the number of variables in the diagram.

random_pivot:
Same as random, but the two variables are chosen so that the first is above
the variable with the largest number of nodes, and the second is below that
variable. In case there are several variables tied for the maximum number of
nodes, the one closest to the root is used.

sift_converge:
The sift method is iterated until no further improvement is obtained.

symmetry_sift:
This method is an implementation of symmetric sifting. It is similar to sifting,
with one addition: Variables that become adjacent during sifting are tested
for symmetry. If they are symmetric, they are linked in a group. Sifting then
continues with a group being moved, instead of a single variable.

symmetry_sift_converge:
The symmetry_sift method is iterated until no further improvement is ob-
tained.

window{2,3,4}:
Permutes the variables within windows of n adjacent variables, where n can
be either 2, 3 or 4, so as to minimize the overall BDD size.

window{2,3,4}_converge:
The window{2,3,4} method is iterated until no further improvement is ob-
tained.
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group_sift:
This method is similar to symmetry_sift, but uses more general criteria to
create groups.

group_sift_converge:
The group_sift method is iterated until no further improvement is obtained.

annealing:
This method is an implementation of simulated annealing for variable order-
ing. This method is potentially very slow.

genetic: This method is an implementation of a genetic algorithm for variable ordering.
This method is potentially very slow.

exact: This method implements a dynamic programming approach to exact reorder-
ing. It only stores a BDD at a time. Therefore, it is relatively efficient in
terms of memory. Compared to other reordering strategies, it is very slow,
and is not recommended for more than 16 boolean variables.

linear: This method is a combination of sifting and linear transformations.

linear_conv:
The linear method is iterated until no further improvement is obtained.

Commanddynamic var ordering - Deals with the dynamic variable ordering.
dynamic_var_ordering [-d] [-e <method>] [-f <method>] [-h]

Controls the application and the modalities of (dynamic) variable ordering. Dynamic
ordering is a technique to reorder the BDD variables to reduce the size of the existing
BDDs. When no options are specified, the current status of dynamic ordering is displayed.
At most one of the options -e, -f, and -d should be specified.

Dynamic ordering may be time consuming, but can often reduce the size of the BDDs
dramatically. A good point to invoke dynamic ordering explicitly (using the -f option) is
after the commands build_model, once the transition relation has been built. It is possible
to save the ordering found using write_order in order to reuse it (using build_model -i

order-file) in the future.

Command options:

-d

Disable dynamic ordering from triggering automatically.

-e <method>

Enable dynamic ordering to trigger automatically whenever a certain thresh-
old on the overall BDD size is reached. <method> must be one of the following:

sift: Moves each variable throughout the order to find an optimal position
for that variable (assuming all other variables are fixed). This generally
achieves greater size reductions than the window method, but is slower.

random: Pairs of variables are randomly chosen, and swapped in the
order. The swap is performed by a series of swaps of adjacent variables.
The best order among those obtained by the series of swaps is retained.
The number of pairs chosen for swapping equals the number of variables
in the diagram.

random pivot: Same as random, but the two variables are chosen so that
the first is above the variable with the largest number of nodes, and the
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second is below that variable. In case there are several variables tied for
the maximum number of nodes, the one closest to the root is used.

sift converge: The sift method is iterated until no further improvement
is obtained.

symmetry sift: This method is an implementation of symmetric sifting.
It is similar to sifting, with one addition: Variables that become adjacent
during sifting are tested for symmetry. If they are symmetric, they are
linked in a group. Sifting then continues with a group being moved,
instead of a single variable.

symmetry sift converge: The symmetry sift method is iterated until no
further improvement is obtained.

window2,3,4: Permutes the variables within windows of "n" adjacent
variables, where "n" can be either 2, 3 or 4, so as to minimize the overall
BDD size.

window2,3,4 converge: The window2,3,4 method is iterated until no fur-
ther improvement is obtained.

group sift: This method is similar to symmetry sift, but uses more gen-
eral criteria to create groups.

group sift converge: The group sift method is iterated until no further
improvement is obtained.

annealing: This method is an implementation of simulated annealing for
variable ordering. This method is potentially very slow.

genetic: This method is an implementation of a genetic algorithm for
variable ordering. This method is potentially very slow.

exact: This method implements a dynamic programming approach to
exact reordering. It only stores a BDD at a time. Therefore, it is relatively
efficient in terms of memory. Compared to other reordering strategies, it
is very slow, and is not recommended for more than 16 boolean variables.

linear: This method is a combination of sifting and linear transformations.

linear converge: The linear method is iterated until no further improve-
ment is obtained.

-f <method>

Force dynamic ordering to be invoked immediately. The values for <method>
are the same as in option -e.

Commandprint bdd stats - Prints out the BDD statistics and parameters
print_bdd_stats [-h]

Prints the statistics for the BDD package. The amount of information depends on the
BDD package configuration established at compilation time. The configurtion parameters
are printed out too. More information about statistics and parameters can be found in
the documentation of the CUDD Decision Diagram package.

Commandset bdd parameters - Creates a table with the value of all currently
active NuSMV flags and change accordingly the configurable parameters of the BDD
package.

set_bdd_parameters [-h] [-s]
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Applies the variables table of the NuSMV environnement to the BDD package, so the user
can set specific BDD parameters to the given value. This command works in conjunction
with the print_bdd_stats and set commands.

print_bdd_stats first prints a report of the parameters and statistics of the current
bdd manager. By using the command set, the user may modify the value of any of the
parameters of the underlying BDD package. The way to do it is by setting a value in
the variable BDD.parameter name where parameter name is the name of the parameter
exactly as printed by the print_bdd_stats command.

Command options:

-s

Prints the BDD parameter and statistics after the modification.

4.7 Administration Commands

This section describes the administrative commands offered by the interactive shell of NuSMV.

Command! shell command
Executes a shell command. The shell command is executed by calling bin/sh -c

shell command . If the command does not exists or you have not the right to execute
it, then an error message is printed.

Commandalias - Provides an alias for a command
alias [-h] [<name> [<string>]]

The "alias" command, if given no arguments, will print the definition of all current aliases.

Given a single argument, it will print the definition of that alias (if any). Given two
arguments, the keyword <name> becomes an alias for the command string <string>,
replacing any other alias with the same name.

Command options:

<name>

Alias

<string>

Command string

It is possible to create aliases that take arguments by using the history substitution mech-
anism. To protect the history substitution character ‘%’ from immediate expansion, it
must be preceded by a ‘\’ when entering the alias.

For example:

NuSMV> alias read "read_model -i \%:1.smv ; set input_order_file \%:1.ord"

NuSMV> read short

will create an alias ‘read’, execute "read model -i short.smv; set input order file short.ord".

And again:

NuSMV> alias echo2 "echo Hi ; echo \%* !"

NuSMV> echo2 happy birthday

will print:

Hi

happy birthday !
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CAVEAT: Currently there is no check to see if there is a circular dependency in the alias
definition. e.g.

NuSMV> alias foo "echo print_bdd_stats; foo"

creates an alias which refers to itself. Executing the command foo will result an infinite
loop during which the command print_bdd_stats will be executed.

Commandecho - Merely echoes the arguments
echo [-h] <args>

Echoes its arguments to standard output.

Commandhelp - Provides on-line information on commands
help [-a] [-h] [<command>]

If invoked with no arguments "help" prints the list of all commands known to the command
interpreter. If a command name is given, detailed information for that command will be
provided.

Command options:

-a

Provides a list of all internal commands, whose names begin with the under-
score character (’ ’) by convention.

Commandhistory - list previous commands and their event numbers
history [-h] [<num>]

Lists previous commands and their event numbers. This is a UNIX-like history mechanism
inside the NuSMV shell.

Command options:

<num>

Lists the last <num> events. Lists the last 30 events if <num> is not specified.

History Substitution:

The history substitution mechanism is a simpler version of the csh history substitution
mechanism. It enables you to reuse words from previously typed commands.

The default history substitution character is the ‘%’ (‘!’ is default for shell escapes, and
‘#’ marks the beginning of a comment). This can be changed using the "set" command.
In this description ’%’ is used as the history char. The ‘%’ can appear anywhere in a line.
A line containing a history substitution is echoed to the screen after the substitution takes
place. ‘%’ can be preceded by a ‘\’ in order to escape the substitution, for example, to
enter a ‘%’ into an alias or to set the prompt.

Each valid line typed at the prompt is saved. If the "history" variable is set (see help page
for "set"), each line is also echoed to the history file. You can use the "history" command
to list the previously typed commands.

Substitutions:

At any point in a line these history substitutions are available.

%:0 Initial word of last command.

%:n n-th argument of last command.

%$ Last argument of last command.
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%* All but initial word of last command.

%% Last command.

%stuf Last command beginning with "stuf".

%n Repeat the n-th command.

%-n Repeat the n-th previous command.

^old^new Replace "old" with "new" in previous command. Trailing spaces are signifi-
cant during substitution. Initial spaces are not significant.

Commandprint usage - Prints processor and BDD statistics.
print_usage [-h]

Prints a formatted dump of processor-specific usage statistics, and BDD usage statistics.
For Berkeley Unix, this includes all of the information in the getrusage() structure.

Command options:

-h

Prints the command usage.

Commandquit - exits NuSMV
quit [-h] [-s]

Stops the program. Does not save the current network before exiting.

Command options:

-s

Frees all the used memory before quitting. This is slower, and it is used for
finding memory leaks.

Commandreset - Resets the whole system.
reset [-h]

Resets the whole system, in order to read in another model and to perform verification on
it.

Command options:

-h

Prints the command usage.

Commandset - Sets an environment variable
set [-h] [<name>] [<value>]

A variable environment is maintained by the command interpreter. The "set" command
sets a variable to a particular value, and the "unset" command removes the definition of
a variable. If "set" is given no arguments, it prints the current value of all variables.

Command options:

-h

Prints the command usage.

<name>

Variable name
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<value>

Value to be assigned to the variable.

Interpolation of variables is allowed when using the set command. The variables are
referred to with the prefix of ’$’. So for example, what follows can be done to check the
value of a set variable:
NuSMV> set foo bar

NuSMV> echo $foo

bar

The last line "bar" will be the output produced by NuSMV.

Variables can be extended by using the character ’:’ to concatenate values. For example:
NuSMV> set foo bar

NuSMV> set foo $foo:foobar

NuSMV> echo $foo

bar:foobar

The variable foo is extended with the value foobar .

Whitespace characters may be present within quotes. However, variable interpolation lays
the restriction that the characters ’:’ and ’/’ may not be used within quotes. This is to
allow for recursive interpolation. So for example, the following is allowed
NuSMV> set "foo bar" this

NuSMV> echo $"foo bar"

this

The last line will be the output produced by NuSMV.
But in the following, the value of the variable foo/bar will not be interpreted correctly:

NuSMV> set "foo/bar" this

NuSMV> echo $"foo/bar"

foo/bar

If a variable is not set by the "set" command, then the variable is returned unchanged.

Different commands use environment information for different purposes. The command
interpreter makes use of the following parameters:

autoexec

Defines a command string to be automatically executed after every command
processed by the command interpreter. This is useful for things like timing
commands, or tracing the progress of optimization.

open path

"open path" (in analogy to the shell-variable PATH) is a list of colon-
separated strings giving directories to be searched whenever a file is opened
for read. Typically the current directory (.) is the first item in this list. The
standard system library (typically $NuSMV LIBRARY PATH) is always im-
plicitly appended to the current path. This provides a convenient short-hand
mechanism for reaching standard library files.

nusmv stderr

Standard error (normally stderr) can be re-directed to a file by setting the
variable nusmv stderr.

nusmv stdout

Standard output (normally stdout) can be re-directed to a file by setting the
variable nusmv stdout.
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Commandsource - Executes a sequence of commands from a file
source [-h] [-p] [-s] [-x] <file> [<args>]

Reads and executes commands from a file.

Command options:

-p

Prints a prompt before reading each command.

-s

Silently ignores an attempt to execute commands from a nonexistent file.

-x

Echoes each command before it is executed.

<file>

File name

Arguments on the command line after the filename are remembered but not evaluated.
Commands in the script file can then refer to these arguments using the history substitu-
tion mechanism.

EXAMPLE:

Contents of test.scr:

read_model -i %:2

flatten_hierarchy

build_variables

build_model

compute_fairness

Typing "source test.scr short.smv" on the command line will execute the sequence

read_model -i short.smv

flatten_hierarchy

build_variables

build_model

compute_fairness

(In this case %:0 gets "source", %:1 gets "test.scr", and %:2 gets "short.smv".) If you
type "alias st source test.scr" and then type "st short.smv bozo", you will execute

read_model -i bozo

flatten_hierarchy

build_variables

build_model

compute_fairness

because "bozo" was the second argument on the last command line typed. In other words,
command substitution in a script file depends on how the script file was invoked. Switches
passed to a command are also counted as positional parameters. Therefore, if you type
"st -x short.smv bozo", you will execute
read_model -i short.smv
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flatten_hierarchy

build_variables

build_model

compute_fairness

To pass the "-x" switch (or any other switch) to "source" when the script uses positional
parameters, you may define an alias. For instance, "alias srcx source -x".

Commandtime - Provides a simple CPU elapsed time value
time [-h]

Prints the processor time used since the last invocation of the "time" command, and the
total processor time used since NuSMV was started.

Commandunalias - Removes the definition of an alias.
unalias [-h] <alias-names>

Removes the definition of an alias specified via the alias command.

Command options:

<alias-names>
Aliases to be removed

Commandunset - Unsets an environment variable
unset [-h] <variables>

A variable environment is maintained by the command interpreter. The "set" command
sets a variable to a particular value, and the "unset" command removes the definition of
a variable.

Command options:

-h

Prints the command usage.

<variables>
Variables to be unset

Commandusage - Provides a dump of process statistics
usage [-h]

Prints a formatted dump of processor-specific usage statistics. For Berkeley Unix, this
includes all of the information in the getrusage() structure.

Commandwhich - Looks for a file called "file name"
which [-h] <file_name>

Looks for a file in a set of directories which includes the current directory as well as those
in the NuSMV path. If it finds the specified file, it reports the found file’s path. The
searching path is specified through the "set open_path" command in ".nusmvrc".

Command options:

<file name>
File to be searched
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4.8 Other Environment Variables

The behavior of the system depends on the value of some environment variables. For
instance, an environment variable specifies the partitioning method to be used in building the
transition relation. The value of environment variables can be inspected and modified with the
‘set’ command. Environment variables can be either logical or utility.

Environment Variableautoexec
Defines a command string to be automatically executed after every command processed
by the command interpreter. This may be useful for timing commands, or tracing the
progress of optimization.

Environment Variablefilec
Enables file completion a la "csh". If the system has been compiled with the "readline"
library, the user is able to perform file completion by typing the 〈TAB〉 key (in a way similar
to the file completion inside the "bash" shell). If the system has not been compiled with
the "readline" library, a built-in method to perform file completion a la "csh" can be
used. This method is enabled with the ‘set filec’ command. The "csh" file completion
method can be also enabled if the "readline" library has been used. In this case the
features offered by readline will be disabled.

Environment Variableshell char
shell_char specifies a character to be used as shell escape. The default value of this
environment variable is ‘!’.

Environment Variablehistory char
history_char specifies a character to be used in history substitutions. The default value
of this environment variable is ‘%’.

Environment Variableopen path
open_path (in analogy to the shell-variable PATH) is a list of colon-separated strings giving
directories to be searched whenever a file is opened for read. Typically the current directory
(‘.’) is first in this list. The standard system library (NuSMV_LIBRARY_PATH) is always
implicitly appended to the current path. This provides a convenient short-hand mechanism
for reaching standard library files.

Environment Variablenusmv stderr
Standard error (normally stderr) can be re-directed to a file by setting the variable
nusmv_stderr.

Environment Variablenusmv stdout
Standard output (normally stdout) can be re-directed to a file by setting the internal
variable nusmv_stdout.

Environment Variablenusmv stdin
Standard input (normally stdin) can be re-directed to a file by setting the internal variable
nusmv_stdin.
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5 Running NuSMV batch

When the -int option is not specified, NuSMV runs as a batch program, in the style of SMV,
performing (some of) the steps described in previous section in a fixed sequence.

system_prompt> NuSMV [command line options] input-file 〈RET〉

The program described in input-file is processed, and the corresponding finite state machine
is built. Then, if input-file contains formulas to verify, their truth in the specified structure is
evaluated. For each formula which is not true a counterexample is printed.

The batch mode can be controlled with the following command line options:

NuSMV [-s] [-ctt] [-lp] [-n idx] [-v vl] [-cpp] [-is] [-ic] [-ils]
[-ii] [-r] [-f] [-int] [-h | -help] [-i iv file] [-o ov file]
[-AG] [-load script file] [-reorder] [-dynamic] [-m method]
[[-mono]|[-thresh cp t]|[-cp cp t]|[-iwls95 cp t]] [-coi]
[-noaffinity] [-iwls95preorder] [-bmc] [-bmc_length k]
[-ofm fm file] [-obm bm file] [input-file]

where the meaning of the options is described below. If input-file is not provided in batch mode,
then the model is read from standard input.

-s Avoids to load the NuSMV commands contained in ‘~/.nusmvrc’ or in ‘.nusmvrc’ or
in ‘$${NuSMV_LIBRARY_PATH}/master.nusmvrc’.

-ctt Checks whether the transition relation is total.

-lp Lists all properties in SMV model

-n idx Specifies which property of SMV model should be checked

-v verbose-level
Enables printing of additional information on the internal operations of NuSMV. Set-
ting verbose-level to 1 gives the basic information. Using this option makes you feel
better, since otherwise the program prints nothing until it finishes, and there is no
evidence that it is doing anything at all. Setting the verbose-level higher than 1
enables printing of much extra information.

-cpp Runs preprocessor on SMV files

-is Does not check SPEC

-ic Does not check COMPUTE

-ils Does not check LTLSPEC

-ii Does not check INVARSPEC

-r Prints the number of reachable states before exiting. If the -f option is not used,
the set of reachable states is computed.

-f Computes the set of reachable states before evaluating CTL expressions.

-int Starts interactive shell.

-help

-h Prints the command line help.

-i iv file Reads the variable ordering from file iv file.

-o ov file Reads the variable ordering from file ov file.
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-AG Verifies only AG formulas using an ad hoc algorithm (see documentation for the
ag_only_search environment variable).

-load cmd-file
Interprets NuSMV commands from file cmd-file.

-reorder Enables variable reordering after having checked all the specification if any.

-dynamic Enables dynamic reordering of variables

-m method Uses method when variable ordering is enabled. Possible values for method are those
allowed for the reorder_method environment variable (see Section 4.6 [Interface to
the DD package], page 50).

-mono Enables monolithic transition relation

-thresh cp t
conjunctive partitioning with threshold of each partition set to cp t (DEFAULT,
with cp t=1000)

-cp cp t DEPRECATED: use -thresh instead.

-iwls95 cp t
Enables Iwls95 conjunctive partitioning and sets the threshold of each partition to
cp t

-coi Enables cone of influence reduction

-noaffinity

Disables affinity clustering

-iwls95preoder

Enables iwls95 preordering

-bmc Enables BMC instead of BDD model checking

-bmc k Sets bmc length variable, used by BMC

-ofm fm file
prints flattened model to file fn file

-obm bm file
Prints boolean model to file bn file
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Appendix A Compatibility with CMU SMV

The NuSMV language is mostly source compatible with the original version of SMV distributed
at Carnegie Mellon University from which we started. In this appendix we describe the most
common problems that can be encountered when trying to use old CMU SMV programs with
NuSMV.

The main problem is variable names in old programs that conflicts with new reserved words.
The list of the new reserved words of NuSMV w.r.t. CMU SMV is the following:

F, G, X, U, V, W, H, O, Y, Z, S, T, B

These names are reserved for the LTL temporal operators.

LTLSPEC It is used to introduce LTL specifications.

INVARSPEC

It is used to introduce invariant specifications.

IVAR It is used to introduce input variables.

JUSTICE It is used to introduce "justice" fairness constraints.

COMPASSION

It is used to introduce "compassion" fairness constraints.

The IMPLEMENTS, INPUT, OUTPUT statements are not supported by NuSMV. They are parsed
from the input file, but are internally ignored.

NuSMV differs from CMU SMV also in the controls that are performed on the input formulas.
Several formulas that are valid for CMU SMV, but that have no clear semantics, are not accepted
by NuSMV. In particular:

• It is no longer possible to write formulas containing nested ‘next’.

TRANS
next(alpha & next(beta | next(gamma))) -> delta

• It is no longer possible to write formulas containing ‘next’ in the right hand side of "normal"
and "init" assignments (they are allowed in the right hand side of "next" assignments), and
with the statements ‘INVAR’ and ‘INIT’.

INVAR
next(alpha) & beta

INIT
next(beta) -> alpha

ASSIGN
delta := alpha & next(gamma); -- normal assignments
init(gamma) := alpha & next(delta); -- init assignments

• It is no longer possible to write ‘SPEC’, ‘FAIRNESS’ statements containing ‘next’.

FAIRNESS
next(running)

SPEC
next(x) & y

• The check for circular dependencies among variables has been done more restrictive.

We say that variable x depends on variable y if x := f(y). We say that there is a circular
dependency in the definition of x if:

− x depends on itself ( e.g. x := f(x,y) );

− x depends on y and y depends on x (e.g. x := f(y) and y := f(x) or x := f(z), z := f(y)
and y := f(x) ).
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In the case of circular dependencies among variables there is no fixed order in which we can
compute the involved variables. Avoiding circular dependencies among variables guarantee
that there exists an order in which the variables can be computed. In NuSMV circular
dependencies are not allowed.

In CMU SMV the test for circular dependencies is able to detect circular dependencies only
in "normal" assignments, and not in "next" assignments. The circular dependencies check
of NuSMV has been extended to detect circularities also in "next" assignments. For instance
the following fragment of code is accepted by CMU SMV but discarded by NuSMV.

MODULE main
VAR

y : boolean;
x : boolean;

ASSIGN
next(x) := x & next(y);
next(y) := y & next(x);

Another difference between NuSMV and CMU SMV is in the variable order file. The variable
ordering file accepted by NuSMV can be partial and can contain variables not declared in the
model. Variables listed in the ordering file but not declared in the model are simply discarded.
The variables declared in the model but not listed in the variable file provided in input are created
at the end of the given ordering following the default ordering. All the ordering files generated
by CMU SMV are accepted in input from NuSMV but the ordering files generated by NuSMV may be
not accepted by CMU SMV. Notice that there is no guarantee that a good ordering for CMU SMV

is also a good ordering for NuSMV. In the ordering files for NuSMV, identifier _process_selector_
can be used to control the position of the variable that encodes process selection. In CMU SMV

it is not possible to control the position of this variable in the ordering; it is hard-coded at the
top of the ordering.
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